Chinese Journal of Organic Chemistry >
Research Progress of Rhamnosyltransferase
Received date: 2018-06-01
Revised date: 2018-08-10
Online published: 2018-08-14
Supported by
Project supported by the National Natural Science Foundation of China (No. 81402809) and the Foundation from Beijing University of Chinese Medicine (No. 2018-JYB-XJQ006).
Rhamnosylation is an important type of glycosylation reaction which is widely involved in organic synthesis and structural modification of natural products. In vivo, rhamnosylation is catalyzed by rhamnosyltransferase that transferred the active rhamnosyl donors to the specific sugar acceptors. A larger number of rhamnosyltransferases have been identified in natural and they often played key roles in the biosynthesis of diverse natural products as well as maintaining the cell structure and physiological functions of biological organisms. Besides, enzymatic rhamnosylation has been an effective complementary method to chemical catalysis in the field of organic glycosylation modifications due to its high catalysis efficiency and specificity, mild reaction conditions as well as environment friendship and so on. In this article, research progresses of rhamnosyltransferase are reviewed based on their enzymatic functions, three dimensional structure investigations, rhamnosyl donors' synthesis, enzymatic catalysis promiscuities, and biochemical catalysis applications. Finally, the future development and application of them are also prospected.
Key words: rhamnosyltransferase; biosynthesis; enzyme catalysis; biocatalysis
Yan Yaru , Qi Bowen , Mo Ting , Wang Xiaohui , Wang Juan , Shi Shepo , Liu Xiao , Tu Pengfei . Research Progress of Rhamnosyltransferase[J]. Chinese Journal of Organic Chemistry, 2018 , 38(9) : 2281 -2295 . DOI: 10.6023/cjoc201806004
[1] Weymouth-Wilson, A. C. Nat. Prod. Rep. 1997, 14, 99.
[2] Aksamit-Stachurska, A.; Korobczak-Sosna, A.; Kulma, A.; Szopa, J. BMC Biotechnol. 2008, 8, 25.
[3] Wang, J.; Hou, B. K. Plant Physiol. Commun. 2008, 44, 997(in Chinese). (王军, 侯丙凯, 植物生理学通讯, 2008, 44, 997.)
[4] Jin, Y.; Wu, X. R.; Chen, Y. J. J. China Pharm. Univ. 2017, 48, 529(in Chinese). (金月, 吴旭日, 陈依军, 中国药科大学学报, 2017, 48, 529.)
[5] Wu, X. M.; Xu, T. T.; Chu, J. L.; He, B. F. Chin. J. Nat. Med. 2010, 8, 389(in Chinese). (吴薛明, 许婷婷, 储建林, 何冰芳, 中国天然药物, 2010, 8, 389.)
[6] Hayder, N.; Bouhlel, I.; Skandrani, I.; Kadri, M.; Steiman, R.; Guiraud, P.; Mariotte, A. M.; Ghedira, K.; Dijoux-Franca, M. G.; Chekir-Ghedira, L. Toxicol. In Vitro 2008, 22, 567.
[7] An, J.; Zuo, G. Y.; Hao, X. Y.; Wang, G. C.; Li, Z. S. Phyto-medicine 2011, 18, 990.
[8] Choi, H. J.; Kim, J. H.; Lee, C. H.; Ahn, Y. J.; Song, J. H.; Baek, S. H.; Kwon, D. H. Antiviral Res. 2009, 81, 77.
[9] Choi, H. J.; Song, J. H.; Park, K. S.; Kwon, D. H. Eur. J. Pharm. Sci. 2009, 37, 329.
[10] Rodríguez, P.; González-Mujica, F.; Bermúdez, J.; Hasegawa, M. Fitoterapia 2010, 81, 1220.
[11] Diantini, A.; Subarnas, A.; Lestari, K.; Halimah, E.; Susilawati, Y.; Supriyatna.; Julaeha, E.; Achmad, T. H.; Suradji, E. W.; Yamazaki, C.; Kobayashi, K.; Koyama, H.; Abdulah, R. Oncol. Lett. 2012, 3, 1069.
[12] Sharoar, M. G.; Thapa, A.; Shahnawaz, M.; Ramasamy, V. S.; Woo, E. R.; Shin, S. Y.; Park, I. S. J. Biomed. Sci. 2012, 19, 104.
[13] Holler, J. G.; Christensen, S. B.; Slotved, H. C.; Rasmussen, H. B.; Gúzman, A.; Olsen, C. E.; Petersen, B.; Mølgaard, P. J. An-timicrob. Chemother. 2012, 67, 1138.
[14] Yin, R.; Han, K.; Heller, W.; Albert, A.; Dobrev, P. I.; Zazímalová, E.; Schaffner, A. R. New Phytol. 2014, 201, 466.
[15] Bols, M.; Binderup, L.; Hansen, J.; Rasmussen, P. J. Med. Chem. 1992, 35, 2768.
[16] Thibodeaux, C. J.; Melancon, C. E.; Liu, H. W. Angew. Chem., Int. Ed. 2008, 47, 9814.
[17] Kamiya, S.; Esaki, S.; Hama, M. Agric. Biol. Chem. 1967, 31, 397.
[18] Nishio, T.; Miyake, Y.; Tsujii, H.; Hakamata, W.; Kadokura, K.; Oku, T. Biosci., Biotechnol., Biochem. 1996, 60, 2038.
[19] Cantarel, B. L.; Coutinho, P. M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. Nucleic Acids Res. 2009, 37, 233.
[20] Guo, S.; Luo, H. M.; Song, J. Y.; Sun, C.; Chen, S. L. World. Sci. Technol. (Modern. Tradit. Chin. Med. Materia. Medica) 2012, 14, 2126(in Chinese). (郭溆, 罗红梅, 宋经元, 孙超, 陈士林, 世界科学技术(中医药现代化), 2012, 14, 2126.)
[21] Yonekura-Sakakibara, K.; Tohge, T.; Niida, R.; Saito, K. J. Biol. Chem. 2007, 282, 14932.
[22] Luzhetskyy, A.; Méndez, C.; Salas, J. A.; Bechthold, A. Curr. Top. Med. Chem. 2008, 8, 680.
[23] Yang, J.; Hoffmeister, D.; Liu, L.; Fu, X.; Thorson, J. S. Bioorg. Med. Chem. 2004, 12, 1577.
[24] Kren, V.; Martínková, L. Curr. Med. Chem. 2001, 8, 1303.
[25] Jones, P.; Messner, B.; Nakajima, J.; Schaffner, A. R.; Saito, K. J. Biol. Chem. 2003, 278, 43910.
[26] Rojas Rodas, F.; Rodriguez, T. O.; Murai, Y.; Iwashina, T.; Sugawara, S.; Suzuki, M.; Nakabayashi, R.; Yonekura-Sakakibara, K.; Saito, K.; Kitajima, J.; Toda, K.; Takahashi, R. Plant Mol. Biol. 2014, 84, 287.
[27] McMullen, M. D.; Kross, H.; Snook, M. E.; Cortés-Cruz, M.; Houchins, K. E.; Musket, T. A.; Coe, E. H. Jr. J. Hered. 2004, 95, 225.
[28] Casas, M. I.; Falcone-Ferreyra, M. L.; Jiang, N.; Mejía-Guerra, M. K.; Rodríguez, E.; Wilson, T.; Engelmeier, J.; Casati, P.; Grotewold, E. Plant Cell 2016, 28, 1297.
[29] Feng, K.; Chen, R.; Xie, K.; Chen, D.; Guo, B.; Liu, X.; Liu, J.; Zhang, M.; Dai, J. Org. Biomol. Chem. 2018, 16, 452.
[30] Frydman, A.; Weisshaus, O.; Bar-Peled, M.; Huhman, D. V.; Sumner, L. W.; Marin, F. R.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. Plant J. 2004, 40, 88.
[31] Bar-Peled, M.; Lewinsohn, E.; Fluhr, R.; Gressel, J. J. Biol. Chem. 1991, 266, 20953.
[32] Frydman, A.; Liberman, R.; Huhman, D. V.; Carmeli-Weissberg, M.; Sapir-Mir, M.; Ophir, R.; Sumner, L.; Eyal, Y. Plant J. 2013, 73, 166.
[33] Liu, X. G.; Lin, C.; Ma, X. D.; Tan, Y.; Wang, J. Z.; Zeng, M. Front. Plant Sci. 2018, 9, 166.
[34] Welch, C. R.; Wu, Q.; Simon, J. E. Curr. Anal. Chem. 2008, 4, 75.
[35] Brugliera, F.; Holton, T. A.; Stevenson, T. W.; Farcy, E.; Lu, C. Y.; Cornish, E. C. Plant J. 1994, 5, 81.
[36] Li, X. J.; Lai, B.; Zhao, J. T.; Qin, Y. H.; He, J. M.; Huang, X. M.; Wang, H.C.; Hu, G. B. Mol. Breed. 2016, 36, 93.
[37] Li, P.; Li, Y. J.; Zhang, F. J.; Zhang, G. Z.; Jiang, X. Y.; Yu, H. M.; Hou, B. K. Plant J. 2017, 89, 85.
[38] Hsu, Y. H.; Tagami, T.; Matsunaga, K.; Okuyama, M.; Suzuki, T.; Noda, N.; Suzuki, M.; Shimura, H. Plant J. 2017, 89, 325.
[39] McCue, K. F.; Allen, P. V.; Shepherd, L. V.; Blake, A.; Maccree, M. M.; Rockhold, D. R.; Novy, R. G.; Stewart, D.; Davies, H. V.; Belknap, W. R. Phytochemistry 2007, 68, 327.
[40] Uehara, Y.; Tamura, S.; Maki, Y.; Yagyu, K.; Mizoguchi, T.; Tamiaki, H.; Imai, T.; Ishii, T.; Ohashi, T.; Fujiyama, K.; Ishimizu, T. Biochem. Biophys. Res. Commun. 2017, 486, 130.
[41] Luzhetskyy, A.; Mayer, A.; Hoffmann, J.; Pelzer, S.; Holzenkamper, M.; Schmitt, B.; Wohlert, S. E.; Vente, A.; Bechthold, A. ChemBio-Chem 2007, 8, 599.
[42] Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Pharmacol. Rev. 2004, 56, 185.
[43] Sianidis, G.; Wohlert, S. E.; Pozidis, C.; Karamanou, S.; Lu-zhetskyy, A.; Vente, A.; Economou, A. J. Biotechnol. 2006, 125, 425.
[44] Gullón, S.; Olano, C.; Abdelfattah, M. S.; Braña, A. F.; Rohr, J.; Méndez, C.; Salas, J. A. Appl. Environ. Microbiol. 2006, 72, 4172.
[45] Decker, H.; Rohr, J.; Motamedi, H.; Zahner, H.; Hutchinson, C. R. Gene 1995, 166, 121.
[46] Blanco, G.; Patallo, E. P.; Braña, A. F.; Trefzer, A.; Bechthold, A.; Rohr, J.; Méndez, C.; Salas, J. A. Chem. Biol. 2001, 8, 253.
[47] Doumith, M.; Legrand, R.; Lang, C.; Salas, J. A.; Raynal, M. C. Mol. Microbiol. 1999, 34, 1039.
[48] Zhang, Q. J. Chin. J. Clin. Rational Drug Use 2013, 6, 177(in Chinese). (张庆娟, 临床合理用药杂志, 2013, 6, 177.)
[49] Zhang, C.; Griffith, B. R.; Fu, Q.; Albermann, C.; Fu, X.; Lee, I. K.; Li, L.; Thorson, J. S. Science 2006, 313, 1291.
[50] Chen, Y. L.; Chen, Y. H.; Lin, Y. C.; Tsai, K. C.; Chiu, H. T. J. Biol. Chem. 2009, 284, 7352.
[51] Ikeda, H.; Nonomiya, T.; Usami, M.; Ohta, T.; Omura, S. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9509.
[52] Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Shinose, M.; Kikuchi, H.; Shiba, T. Nat. Biotechnol. 2003, 21, 526.
[53] Wu, Q.; Wu, J. B.; Li, Y. Chin. J. Antibiot. 1999, 24, 401.
[54] Wang, L. Y.; Li, S. T.; Li, Y. FEMS Microbiol. Lett. 2003, 220, 21.
[55] Li, X.; Wang, L.; Bai, L.; Yao, C.; Zhang, Y.; Zhang, R.; Li, Y. J. Appl. Microbiol. 2010, 108, 1544.
[56] Wu, H.; Wang, W.; Han, S. Y. Microbiology (Beijing, China) 2007, 34, 148(in Chinese). (吴虹, 汪薇, 韩双艳, 微生物学通报, 2007, 34, 148.)
[57] Ochsner, U. A.; Fiechter, A.; Reiser, J. J. Biol. Chem. 1994, 269, 19787.
[58] Rahim, R.; Ochsner, U. A.; Olvera, C.; Graninger, M.; Messner, P.; Lam, J. S.; Soberón-Chávez, G. Mol. Microbiol. 2001, 40, 708.
[59] Lang, S.; Wullbrandt, D. Appl. Microbiol. Biotechnol. 1999, 51, 22.
[60] Grzegorzewicz, A. E.; Ma, Y.; Jones, V.; Crick, D.; Liav, A.; McNeil, M. R. Microbiology 2008, 154, 3724.
[61] Mills, J. A.; Motichka, K.; Jucker, M.; Wu, H. P.; Uhlik, B. C.; Stern, R. J.; Scherman, M. S.; Vissa, V. D.; Pan, F.; Kundu, M.; Ma, Y. F.; McNeil, M. J. Biol. Chem. 2004, 279, 43540.
[62] Harrus, D.; Kellokumpu, S.; Glumoff, T. Cell Mol. Life. Sci. 2018, 75, 833.
[63] Steiner, K.;Hagelueken, G.; Messner, P.; Schaffer, C.; Naismith, J. H. J. Mol. Biol. 2010, 397, 436.
[64] Isiorho, E. A.; Liu, H. W.; Keatinge-Clay, A. T. Biochemistry 2012, 51, 1213.
[65] Waldron, C.; Matsushima, P.; Rosteck, P. R. Jr.; Broughton, M. C.; Turner, J.; Madduri, K.; Crawford, K. P.; Merlo, D. J.; Baltz, R. H. Chem. Biol. 2001, 8, 487.
[66] Zhao, Y.; Thorson, J. S. J. Org. Chem. 1998, 63, 7568.
[67] Sun, Q.; Li, X. J.; Sun, J.; Gong, S. S.; Liu, G.; Liu, G. D. Tetrahedron 2014, 70, 294.
[68] Marumo, K.; Lindqvist, L.; Verma, N.; Weintraub, A.; Reeves, P. R.; Lindberg, A. A. FEBS J. 1992, 204, 539.
[69] Schnaitman, C. A.; Klena, J. D. Microbiol. Rev. 1993, 57, 655.
[70] Stein, A.; Kula, M. R.; Elling, L. Glycoconjugate J. 1998, 15, 139.
[71] Graninger, M.; Nidetzky, B.; Heinrichs, D. E.; Whitfield, C.; Messner, P. J. Biol. Chem. 1999, 274, 25069.
[72] Usadel, B.; Kuschinsky, A. M.; Rosso, M. G.; Eckermann, N.; Pauly, M. Plant Physiol. 2004, 134, 286.
[73] Oka, T.; Nemoto, T.; Jigami, Y. J. Biol. Chem. 2007, 282, 5389.
[74] Kim, B. G.; Jung, W. D.; Ahn, J. H. J. Plant Biol. 2013, 56, 7.
[75] Yin, S.; Liu, M.; Kong, J. Q. Plant Physiol. Biochem. 2016, 109, 536.
[76] Martinez, V.; Ingwers, M.; Smith, J.; Glushka, J.; Yang, T.; Bar-Peled, M. J. Biol. Chem. 2012, 287, 879.
[77] Gantt, R. W.; Peltier-Pain, P.; Cournoyer, W. J.; Thorson, J. S. Nat. Chem. Biol. 2011, 7, 685.
[78] Erijman, A.; Aizner, Y.; Shifman, J. M. Biochemistry. 2011, 50, 602.
[79] Franco, O. L. FEBS Lett. 2011, 585, 995.
[80] Mo, T.; Liu, X.; Liu, Y. Y.; Wang, X. H.; Zhang, L.; Wang, J.; Zhang, Z. X.; Shi, S. P.; Tu, P. F. RSC Adv. 2016, 6, 84616.
[81] Parajuli, P.; Pandey, R. P.; Trang, N. T. H.; Oh, T. J.; Sohng, J. K. Carbohydr. Res. 2015, 418, 13.
[82] Parajuli, P.; Pandey R. P.; Darsandhari, S.; Yong, I. P.; Sohng, J. K. J. Carbohydr. Chem. 2016, 35, 367.
[83] Ohashi, T.; Hasegawa, Y.; Misaki, R.; Fujiyama, K. Appl. Microbiol. Biotechnol. 2016, 100, 687.
[84] Pandey, R. P.; Parajuli, P.; Gurung, R. B.; Sohng, J. K. Enzyme Microb. Tech. 2016, 91, 26.
[85] Yoshikuni, Y.; Ferrin, T. E.; Keasling, J. D. Nature 2006, 440, 1078.
[86] Kim, B. G.; Kim, H. J.; Ahn, J. H. J. Agric. Food Chem. 2012, 60, 11143.
[87] Yang, S. M.; Han, S. H.; Kim, B. G.; Ahn, J. H. J. Ind. Microbiol. Biotechnol. 2014, 41, 1311.
[88] Roepke, J.; Bozzo, G. G. ChemBioChem 2013, 14, 2418.
[89] Kim, H. J.; Kim, B. G.; Ahn, J. H. Appl. Microbiol. Biotechnol. 2013, 97, 5275.
[90] Thuan, N. H.; Malla, S.; Trung, N. T.; Dhakal, D.; Pokhrel, A. R.; Chu, L. L.; Sohng, J. K. World J. Microbiol. Biotechnol. 2017, 33, 36.
[91] Parajuli, P.; Pandey, R. P.; Trang, N. T.; Chaudhary, A. K.; Sohng, J. K. Microb. Cell Fact. 2015, 14, 76.
[92] Frydman, A. Weisshaus, O.; Huhman, D. V.; Sumner, L. W.; Bar-Peled, M.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. J. Agric. Food Chem. 2005, 53, 9708.
[93] Gong, Z. J.; Peng, Y. F.; Zhang, Y. T.; Song, G. T.; Chen, W. J. Jia, S. R.; Wang, Q. H. Chin. J. Biotechnol. 2015, 31, 1050(in Chinese) (巩志金, 彭彦峰, 张煜婷, 宋国田, 陈五九, 贾士儒, 王钦宏, 生物工程学报, 2015, 31, 1050.)
[94] Du, J.; Zhang, A.; Hao, J.; Wang, J. Biotechnol. Lett. 2017, 39, 1041.
/
〈 |
|
〉 |