Articles

Tin Powder Promoted Synthesis of α-Trifluoromethyl Homoallylic Hydrazides

  • Liu Jiaxin ,
  • Huang Danfeng ,
  • Wang Xiaoping ,
  • Zong Wuzhong ,
  • Su Yingpeng ,
  • Wang Kehu ,
  • Hu Yulai
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Received date: 2019-01-07

  Revised date: 2019-01-29

  Online published: 2019-02-22

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21861033, 21462037).

Abstract

An efficient multicomponent one-pot reaction was developed for the synthesis of α-trifluoromethyl homoallylic hydrazides from the reactions of ethyl trifluoropyruvate, hydrazides and allylic bromide with tin powder in the presence of Brønsted and Lewis acid in 1,4-dioxane under reflux. The method avoids the use of toxic stannanes and allows easy operation. The reaction proceeds smoothly under mild reaction conditions to give the corresponding products in good yields.

Cite this article

Liu Jiaxin , Huang Danfeng , Wang Xiaoping , Zong Wuzhong , Su Yingpeng , Wang Kehu , Hu Yulai . Tin Powder Promoted Synthesis of α-Trifluoromethyl Homoallylic Hydrazides[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1767 -1775 . DOI: 10.6023/cjoc201901007

References

[1] (a) Ke, S.; Sun, T.; Liang, Y.; Yang, Z. Chin. J. Org. Chem. 2010, 30, 1820 (in Chinese).(柯少勇, 孙婷婷, 梁英, 杨自文, 有机化学, 2010, 30, 1820.)
(b) Cui, Z.-N.; Wang, Z.; Li, Y.; Zhou, X.-Y.; Ling, Y.; Yang, X.-L. Chin. J. Org. Chem. 2007, 27, 1300 (in Chinese).(崔紫宁, 王振, 李映, 周心玉, 凌云, 杨新玲, 有机化学, 2007, 27, 1300.)
(c) Aubin, S.; Martin, B.; Delcros, J.-G.; Arlot-Bonnemains, Y.; Baudy-Floc'h, M. J. Med. Chem. 2005, 48, 330.
(d) Huang, R.; Wang, Q. J. Organomet. Chem. 2001, 637, 94.
[2] (a) Wing, K. D. Science 1988, 241, 467.
(b) Wing, K. D.; Slawecki, R. A.; Carlson, G. R. Science 1988, 241, 470.
[3] (a) Vardanyan, R.; Hruby, V. Synthesis of Essential Drugs, 1st ed., Elsevier Science, Maryland Heights, 2006, pp. 110~112.
(b) Mashkovskiy, M. D. Khim.-Farm. Zh. 1976, 10, 3.
[4] (a) Heinzelman, R. V.; Szmuszkovicz, J. Prog. Drug Res. 1963, 6, 85.
(b) Nogrady, T.; Morris, L. J. Med. Chem. 1966, 9, 438.
[5] (a) Grande, F.; Aiello, F.; De Grazia, O.; Brizzi, A.; Garofalo, A.; Neamati, N. Bioorg. Med. Chem. 2007, 15, 288.
(b) Zheng, L.-W.; Wu, L.-L.; Zhao, B.-X.; Dong, W.-L.; Miao, J.-Y. Bioorg. Med. Chem. 2009, 17, 1957.
(c) Lian, S.; Su, H.; Zhao, B.-X.; Liu, W.-Y.; Zheng, L.-W.; Miao, J.-Y. Bioorg. Med. Chem. 2009, 17, 7085.
[6] (a) Todeschini, A. R.; de Miranda, A. L. P.; da Silva, K. C. M.; Parrini, S. C.; Barreiro, E. J. Eur. J. Med. Chem. 1998, 33, 189.
(b) Duarte, C. D.; Tributino, J. L. M.; Lacerda, D. I.; Martins, M. V.; Alexandre-Moreira, M. S.; Dutra, F.; Bechara, E. J. H.; De-Paula, F. S.; Goulart, M. O. F.; Ferreira, J.; Calixto, J. B.; Nunes, M. P.; Bertho, A. L.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Bioorg. Med. Chem. 2007, 15, 2421.
[7] (a) Thompson, S. K.; Halbert, S. M.; DesJarlais, R. L.; Tomaszek, T. A.; Levy, M. A.; Tew, D. G.; Ijames, C. F.; Veber, D. F. Bioorg. Med. Chem. 1999, 7, 599.
(b) Khan, K. M.; Shujaat, S.; Rahat, S.; Hayat, S.; Atta-ur-Rahman; Choudhary, M. I. Chem. Pharm. Bull. 2002, 50, 1443.
(c) Ersmark, K.; Nervall, M.; Hamelink, E.; Janka, L. K.; Clemente, J. C.; Dunn, B. M.; Blackman, M. J.; Samuelsson, B.; Åqvist, J.; Hallberg, A. J. Med. Chem. 2005, 48, 6090.
[8] (a) Cui, H.; Xu, Y.; Zhang, Z.-F. Anal. Chem. 2004, 76, 4002.
(b) Kanie, K.; Yasuda, T.; Ujiie, S.; Kato, T. Chem. Commun. 2000, 1899.
(c) Parra, M.; Hidalgo, P.; Barberá, J.; Carrasco, E.; Saavedra, C. Liq. Cryst. 2006, 33, 391.
(d) Yoneya, M.; Takada, S.; Maeda, Y.; Yokoyama, H. Liq. Cryst. 2008, 35, 339.
[9] (a) Licandro, E.; Perdicchia, D. Eur. J. Org. Chem. 2004, 2004, 665.
(b) Majumdar, P.; Pati, A.; Patra, M.; Behera, R. K.; Behera, A. K. Chem. Rev. 2014, 114, 2942.
(c) Flagstad, T.; Petersen, M. T.; Nielsen, T. E. Angew. Chem., Int. Ed. 2015, 54, 8395.
(d) Zhang, W.; Sun, J.; Xu, F.; Zhu, H.; Yue, R.; Zhang, Y.; Niu, F. Chin. J. Org. Chem. 2017, 37, 3191 (in Chinese).(张文婷, 孙健, 徐飞, 朱红, 岳瑞雪, 张毅, 钮福祥, 有机化学, 2017, 37, 3191.)
(e) Wang, Y.; Wang, K.-H.; Su, Y.; Yang, Z.; Wen, L.; Liu, L.; Wang, J.; Huang, D.; Hu, Y. J. Org. Chem. 2018, 83, 939.
(f) Yan, Y.; Zhang, Z.; Wan, Y.; Zhang, G.; Ma, N.; Liu, Q. J. Org. Chem. 2017, 82, 7957.
(g) Flood, D. T.; Hintzen, J. C. J.; Bird, M. J.; Cistrone, P. A.; Chen, J. S.; Dawson, P. E. Angew. Chem., Int. Ed. 2018, 57, 11634.
[10] (a) Gou, B.; Yang, C.; Zhang, L.; Xia, W. Acta Chim. Sinica 2017, 75, 66 (in Chinese).(苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.)
(b) Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060 (in Chinese).(惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2017, 37, 3060.)
(c) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
(d) Kirk, K. L. Curr. Top. Med. Chem. 2006, 6, 1447.
(e) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(f) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(g) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(h) Cametti, M.; Crousse, B.; Metrangolo, P.; Milani, R.; Resnati, G. Chem. Soc. Rev. 2012, 41, 31.
[11] (a) Formicola, L.; Maréchal, X.; Basse, N.; Bouvier-Durand, M.; Bonnet-Delpon, D.; Milcent, T.; Reboud-Ravaux, M.; Ongeri, S. Bioorg. Med. Chem. Lett. 2009, 19, 83.
(b) Onnis, V.; Cocco, M. T.; Fadda, R.; Congiu, C. Bioorg. Med. Chem. 2009, 17, 6158.
[12] (a) Xu, Y.; Huang, D.; Wang, K.-H.; Ma, J.; Su, Y.; Fu, Y.; Hu, Y. J. Org. Chem. 2015, 80, 12224.
(b) Wang, J.; Huang, D.; Wang, K.-H.; Peng, X.; Su, Y.; Hu, Y.; Fu, Y. Org. Biomol. Chem. 2016, 14, 9533.
(c) Wang, K.-H.; Wang, J.; Wang, Y.; Su, Y.; Huang, D.; Fu, Y.; Du, Z.; Hu, Y. Synthesis 2018, 50.
[13] Chen, W. J.; Liao, D. H. Chem. World 2006, (5), 285 (in Chinese).(陈文杰, 廖道华, 化学世界, 2006, (5), 285.)

Outlines

/