REVIEW

Recent Advances in Functionalization of Double Bond Based on Maleimides

  • Yang Zhenhua ,
  • Zhu Jianan ,
  • Wen Caiyue ,
  • Ge Yingxiang ,
  • Zhao Shengyin
Expand
  • Key Laboratory of Science and Technology of Exo-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620

Received date: 2019-02-14

  Revised date: 2019-04-10

  Online published: 2019-04-19

Supported by

Project supported by the Shanghai Municipal Natural Science Foundation (No. 15ZR1401400) and the National Undergraduate Training Program for Innovation and Entrepreneurship in Donghua University (2018).

Abstract

Maleimide, a common motif in a variety of natural alkaloids, has been extensively investigated due to its noteworthy biological activities and optical properties. Additionally, it can be transformed into many important heterocyclic frameworks such as succinimides, pyrrolidines, and 2-pyrrolidones. Thus, a great deal of attention has been focused on the development of new synthetic routes to access polyfunctionalized maleimides. In this article, the recent research progress in functionalization of double bond is reviewed based on maleimides according to Michael addition, oxidative coupling and cycloaddition reaction.

Cite this article

Yang Zhenhua , Zhu Jianan , Wen Caiyue , Ge Yingxiang , Zhao Shengyin . Recent Advances in Functionalization of Double Bond Based on Maleimides[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2412 -2427 . DOI: 10.6023/cjoc201902012

References

[1] Lavrard, H.; Rodriguez, F.; Delfourne, E. Bioorg. Med. Chem. Lett. 2014, 22, 1961.
[2] Chien, S.-C.; Chen, M.-L.; Kuo, H.-T.; Tsai, Y.-C.; Lin, B.-F.; Kuo, Y.-H. J. Agric. Food Chem. 2008, 56, 7017.
[3] (a) Ho, S.-Y.; Alam, J.; Jeyaraj, D.-A.; Wang, W.; Lin, G.-R.; Ang, S.-H.; Tan, E.-S.-W.; Lee, M.-A.; Ke, Z.; Madan, B.; Virshup, D.-M.; Ding, L.-J.; Manoharan, V.; Chew, Y.-S.; Low, C.-B.; Pendharkar, V.; Sangthongpitag, K.; Hill, J.; Keller, T.-H.; Poulsen, A. J. Med. Chem. 2017, 60, 6678.
(b) Alam, J.; Poulsen, A.; Ho, S.-Y.; Wang, W.-L.; Duraiswamy, A. WO 2015094118, 2008[Chem. Abstr. 2015, 163, 132777].
[4] Kayser, S.; Levis, M.-J.; Schlenk, R.-F. Expert Rev. Clin. Pharmacol. 2017, 10, 1177.
(b) Levis, M. Blood 2017, 129, 3403.
[5] Shimokawa, J.; Chiyoda, K.; Umihara, H.; Fukuyama, T. Chem. Pharm. Bull. 2016, 64, 1239.
(b) Cai, S.-L.; Song, R.; Dong, H.-Q.; Lin, G.-Q.; Sun, X.-W. Org. Lett. 2016, 18, 1996.
[6] (a) Daly, M.-J.; Jones, G.-W.; Nicholls, P.-J.; Smith, H.-J.; Rowlands, M.-G.; Bunnett, M.-A. J. Med. Chem. 1986, 29, 520.
(b) Sharma, D.-K.; Rajput, V.-S.; Singh, S.; Sharma, R.; Khan, I. A.; Mukherjee, D. ChemistrySelect 2016, 1, 1954.
[7] (a) Driller, K.-M.; Klein, H.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 6041.
(b) Mathur, P.; Joshi, R.-K.; Rai, D.-K.; Jha, B.; Mobin, S.-M. Dalton. Trans. 2012, 41, 5045.
[8] Henon, H.; Messaoudi, S.; Hugon, B.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Tetrahedron 2005, 61, 5599.
[9] An, Y.-L.; Shao, Z.-Y.; Cheng, J.; Zhao, S.-Y. Synthesis 2013, 45, 2719.
[10] Lanke, V.; Bettadapur, K.-R.; Prabhu, K.-R. Org. Lett. 2015, 17, 4662.
[11] Muniraj, N.; Prabhu, K.-R. ACS Omega 2017, 2, 4470.
[12] Zhang, Z.; Han, S.; Tang, M.; Ackermann, L.; Li, J. Org. Lett. 2017, 19, 3315.
[13] Liu, S.-L.; Li, Y.; Guo, J.-R.; Yang, G.-C.; Li, X.-H.; Gong, J.-F.; Song, M.-P. Org. Lett. 2017, 19, 4042.
[14] Sherikar, M.-S.; Kapanaiah, R.; Lanke, V.; Prabhu, K.-R. Chem. Commun. 2018, 54, 11200.
[15] Pan, C.; Wang, Y.; Wu, C.; Yu, J.-T. Org. Biomol. Chem. 2018, 16, 693.
[16] Koltunov, K.-Y.; Prakash, G.-K.-S.; Rasul, G.; Olah, G.-A. Eur. J. Org. Chem. 2006, 4861.
[17] Yang, Z.-H.; Chen, Z.-H.; An, Y.-L.; Zhao, S.-Y. RSC Adv. 2016, 6, 23438.
[18] Bettadapur, K.-R.; Lanke, V.; Prabhu, K.-R. Org. Lett. 2015, 17, 4658.
[19] Mandal, R.; Emayavaramban, B.; Sundararaju, B. Org. Lett. 2018, 20, 2835.
[20] Li, F.; Zhou, Y.; Yang, H.; Liu, D.; Sun, B.; Zhang, F.-L. Org. Lett. 2018, 1, 146.
[21] Yu, J. T.; Chen, R.; Jia, H.; Pan, C. J. Org. Chem. 2018, 83, 12086.
[22] Han, S.-H.; Kim, S.; De, U.; Mishra, N.-K.; Park, J.; Sharma, S.; Kwak, J.-H.; Han, S.; Kim, H.-S.; Kim, I.-S. J. Org. Chem. 2016, 81, 12416.
[23] He, Q.; Yamaguchi, T.; Chatani, N. Org. Lett. 2017, 19, 4544.
[24] Chen, X.; Ren, J.; Xie, H.; Sun, W.; Sun, M.; Wu, B. Org. Chem. Front. 2018, 5, 184.
[25] Bettadapur, K.-R.; Lanke, V.; Prabhu, K.-R. Chem. Commun. 2017, 53, 6251.
[26] Mandal, A.; Sahoo, H.; Dana, S.; Baidya, M. Org. Lett. 2017, 19, 4138.
[27] Muniraj, N.; Prabhu, K.-R. J. Org. Chem. 2017, 82, 6913.
[28] Qrareya, H.; Ravelli, D.; Fagnoni, M.; Albinia, A. Adv. Synth. Catal. 2013, 355, 2891.
[29] Capaldo, L.; Buzzetti, L.; Merli, D.; Fagnoni, M.; Ravelli, D. J. Org. Chem. 2016, 81, 7102.
[30] Han, S.; Park, J.; Kim, S.; Lee, S.-H.; Sharma, S.; Mishra, N.-K.; Jung, Y.-H.; Kim, I.-S. Org. Lett. 2016, 18, 4666.
[31] (a) Cunha, S.; Rodovalho, W.; Azevedo, N. R.; Mendonca, M.-D.-O.; Lariucci, C.; Vencato, I. J. Brazil. Chem. Soc. 2002, 13, 629.
(b) Gomez-Torres, E.; Alonso, D.-A.; Gomez-Bengoa, E.; Najera, C. Eur. J. Org. Chem. 2013, 2013, 1434.
(c) Noeth, J.; Frankowski, K.-J.; Neuenswander, B.; Aube, J.; Reiser, O. J. Comb. Chem. 2008, 10, 456.
[32] Zhao, G.-L.; Xu, Y.-M.; Sunden, H.; Eriksson, L.; Sayah, M.; Cordova, A. Chem. Commun. 2007, 7, 734.
[33] Yu, F.; Jin, Z.; Huang, H.; Ye. T.; Liang, X.; Ye, J.-X. Org. Bio-mol. Chem. 2010, 8, 4767.
[34] Yu, F.; Sun, X.; Jin, Z.; Wen, S.; Liang, X.; Ye, J.-X. Chem. Commun. 2010, 46, 4589.
[35] Muramulla, S.; Ma, J.-A.; Zhao, J.-C.-G. Adv. Synth. Catal. 2013, 355, 1260.
[36] Vizcaino-Milla, P.; Sansano, J.-M.; Najera, C.; Fiser, B.; Gomez-Bengoa, E. Synthesis 2015, 47, 2199.
[37] Nakashima, K.; Kawada, M.; Hirashima, S.; Kato, M.; Koseki, Y.; Miura, T. Synlett 2015, 26, 1248.
[38] Wang, J.-J.; Dong, X.-J.; Wei, W.-T.; Yan, M. Tetrahedron:Asymmetry 2011, 22, 690.
[39] Bai, J.-F.; Wang, L.-L.; Peng, L.; Guo, Y.-L.; Jia, L.-N.; Tian, F.; He, G.-Y.; Xu, X.-Y.; Wang, L.-X. J. Org. Chem. 2012, 77, 2947.
[40] Shirakawa, S.; Terao, S. J.; He, R.; Maruoka, K. Chem. Commun. 2011, 47, 10557.
[41] Gomez-Torres, E.; Alonso, D. A.; Gomez-Bengoa, E.; Najera, C. Org. Lett. 2011, 13, 6106.
[42] Li, X.; Hu, S.; Xi, Z.; Zhang, L.; Luo, S.; Cheng, J.-P. J. Org. Chem. 2010, 75, 8697.
[43] Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2010, 12, 2896.
[44] Feng, J.; Zhang, Y.; Lin, L.; Yao, Q.; Liu, X.; Feng, X. Chem. Commun. 2015, 51, 10554.
[45] Yarlagadda, S.; Reddy, C.-R.; Ramesh, B.; Kumar, G.-R.; Sridhar, B.; Reddy, B.-V.-S. Eur. J. Org. Chem. 2018, 1364.
[46] Li, J.; Qiu, S.; Ye, X.; Zhu, B.; Liu, H.; Jiang, Z. J. Org. Chem. 2016, 81, 11916.
[47] Iyer, P.-S.; O'Malley, M.-M.; Lucas, M.-C. Tetrahedron Lett. 2007, 48, 4413.
[48] Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 4611.
[49] Berhal, F.; Wu, Z.; Genet, J.; Ayad, T.; Ratovelomanana-Vidal, V. J. Org. Chem. 2011, 76, 6320.
[50] Korenaga, T.; Ko, A.; Shimamda, K. J. Org. Chem. 2013, 78, 9975.
[51] Gopula, B.; Yang, S.-H.; Kuo, T.-S.; Hsieh, J.-C.; Wu, P.-Y.; Henschke, J.-P.; Wu, H.-L. Chem. Eur. J. 2015, 21, 11050.
[52] Kumar, V.; Mitra, R.; Bhattarai, S.; Nair, V.-A. Synth. Commun. 2011, 41, 392.
[53] Raycroft, M.-A.-R.; Racine, K.-E.; Rowley, C.-N.; Keillor, J.-W. J. Org. Chem. 2018, 83, 11674.
[54] Han, F.; Yang, L.; Li, Z.; Xia, C.-G. Org. Biomol. Chem. 2012, 10, 346.
[55] An, Y.-L.; Deng, Y.-X.; Zhang, W.; Zhao, S.-Y. Synthesis 2015, 47, 1581.
[56] Velchinskaya, E.; Petsushak, B.; Rogal, A. Chem. Heterocycl. Compd. 2007, 43, 695.
[57] Uno, B.-E.; Deibler, K.-K.; Villa, C.; Raghuraman, A.; Scheidt, K.-A. Adv. Synth. Catal. 2018, 360, 1719.
[58] Uno, B.-E.; Dicken, R.-D.; Redfern, L.-R.; Stern, C.-M.; Krzywicki, G.-G.; Scheidt, K.-A. Chem. Sci. 2018, 9, 1634.
[59] Jiang, Z.; Zhang, Y.; Ye, W.; Tan, C.-H. Tetrahedron Lett. 2007, 48, 51.
[60] Balint, E.; Takacs, J.; Drahos, L.; Keglevich, G. Heteroat. Chem. 2012, 23, 235.
[61] Molleti, N.; Bjornberg, C.; Kong, J.-Y. Org. Biomol. Chem. 2016, 14, 10695.
[62] (a) Bourderioux, A.; Routier, S.; Beneteau, V.; Merour, J.-Y. Tetrahedron 2007, 63, 9465.
(b) Bouissane, L.; Sestelo, J.-P.; Sarandeses, L. A. Org. Lett. 2009, 11, 1285.
(c) Awuah, E.; Capretta, A. J. Org. Chem. 2011, 76, 3122.
(d) Souffrin, A.; Croix, C.; Viaud-Massuard, M.-C. Eur. J. Org. Chem. 2012, 13, 2499
[63] Roshchin, A.-I.; Polunin, E.-V. Mendeleev Commun. 2008, 18, 332.
[64] Lim, L.-H.; Zhou, J. Org. Chem. Front. 2015, 2, 775.
[65] Jafarpour, F.; Shamsianpour, M.; Issazadeh, S.; Dorrani, M.; Hazrati, H. Tetrahedron 2017, 73, 1668.
[66] Jafarpour, F.; Shamsianpour, M. RSC Adv. 2016, 6, 103567.
[67] Yang, Z.-H.; An, Y.-L.; Chen, Y.; Shao, Z.-Y.; Zhao, S.-Y. Adv. Synth. Catal. 2016, 358, 3869.
[68] Dana, S.; Mandal, A.; Sahoo, H.; Baidya, M. Org. Lett. 2017, 19, 1902.
[69] An, Y.-L.; Zhang, H.-H.; Yang, Z.-H.; Lin, L.; Zhao, S.-Y. Eur. J. Org. Chem. 2016, 2016, 5405.
[70] Kong, D.-H.; An, Y.-L.; Shao, Z.-Y.; Zhao, S.-Y. J. Chem. Res. 2018, 42, 476.
[71] (a) Yang, Z.-H.; Tan, H.-R.; An, Y.-L.; Zhao, Y.-W.; Lin, H.-P.; Zhao, S.-Y. Adv. Synth. Catal. 2018, 360, 173.
(b) Yang, Z.-H.; Zhu, J.-N.; Jin, Z.-H.; Zheng, J.; Zhao, S.-Y. Synthesis 2018, 50, 4627.
[72] Yang, Z.-H.; Tan, H.-R.; Zhu, J.-N.; Zheng, J.; Zhao, S.-Y. Adv. Synth. Catal. 2018, 360, 1523.
[73] (a) Maruoka, H.; Okabe, F.; Koutake, Y.; Fujioka, T.; Yamagata, K. Heterocycles 2009, 77, 617.
(b) Bai, J.-F.; Guo, Y.-L.; Peng, L.; Jia, L.-N.; Xu, X.-Y.; Wang, L.-X. Tetrahedron 2013, 69, 1229.
(b) Petrelli, A.; Samain, E.; Pradeau, S.; Halila, S.; Fort, S. ChemBioChem 2017, 18, 206.
[74] Baker, J.-R.; Tedaldi, L.-M.; Aliev, A.-E. Chem. Commun. 2012, 48, 4725.
[75] Lin, C.; Zhen, L.; Cheng, Y.; Du, H.-J.; Zhao, H.; Wen, X.; Kong, L.-Y.; Xu, Q.-L.; Sun, H. Org. Lett. 2015, 17, 2684.
[76] Ding, G.; Wu, X.; Jiang, L.; Zhang, Z.; Xie, X. Org. Lett. 2017, 19, 6048.
[77] Qiu, S.; Lee, R.; Zhu, B.; Coote, M.-L.; Zhao, X.; Jiang, Z. J. Org. Chem. 2016, 81, 8061.
[78] Nishikawa, Y.; Nakano, S.; Tahira, Y.; Terazawa, K.; Yamazaki, K.; Kitamura, C.; Hara, O. Org. Lett. 2016, 18, 2004.
[79] Kumar, G.-V.; Govindaraju, M.; Renuka, N.; Khatoon, B.-B.-A.; Mylarappa, B.-N.; Kumar, K.-A. Rasayan J. Chem. 2012, 5, 338.
[80] Liu, G.-N.; Luo, R.-H.; Zhou, Y.; Zhang, X.-J.; Li, J.; Yang, L.-M.; Zheng, Y.-T.; Liu, H. Molecules 2016, 21, 1198/1.
[81] Zhang, X.-N.; Chen, G.-Q.; Tang, X.-Y.; Wei, Y.; Shi, M. Angew. Chem., Int. Ed. 2014, 53, 10768.
[82] Sharma, S.; Han, S. H.; Oh, Y.; Mishra, N.-K.; Lee, S.-H.; Oh, J.-S.; Kim, I.-S. Org. Lett. 2016, 18, 2568.
[83] Morita, T.; Akita, M.; Satoh, T.; Kakiuchi, F.; Miura, M. Org. Lett. 2016, 18, 4598.
[84] Yu, W.; Zhang, W.; Liu, Y.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2017, 4, 77.
[85] Zhu, C.; Falck, J.-R. Chem. Commun. 2012, 48, 1674.
[86] Miura, W.; Hirano, K.; Miura, M. Org. Lett. 2015, 17, 4034.

Outlines

/