Chinese Journal of Organic Chemistry >
Recent Advances in Functionalization of Double Bond Based on Maleimides
Received date: 2019-02-14
Revised date: 2019-04-10
Online published: 2019-04-19
Supported by
Project supported by the Shanghai Municipal Natural Science Foundation (No. 15ZR1401400) and the National Undergraduate Training Program for Innovation and Entrepreneurship in Donghua University (2018).
Maleimide, a common motif in a variety of natural alkaloids, has been extensively investigated due to its noteworthy biological activities and optical properties. Additionally, it can be transformed into many important heterocyclic frameworks such as succinimides, pyrrolidines, and 2-pyrrolidones. Thus, a great deal of attention has been focused on the development of new synthetic routes to access polyfunctionalized maleimides. In this article, the recent research progress in functionalization of double bond is reviewed based on maleimides according to Michael addition, oxidative coupling and cycloaddition reaction.
Key words: maleimide; Michael addition; oxidative coupling; cycloaddition reaction
Yang Zhenhua , Zhu Jianan , Wen Caiyue , Ge Yingxiang , Zhao Shengyin . Recent Advances in Functionalization of Double Bond Based on Maleimides[J]. Chinese Journal of Organic Chemistry, 2019 , 39(9) : 2412 -2427 . DOI: 10.6023/cjoc201902012
[1] Lavrard, H.; Rodriguez, F.; Delfourne, E. Bioorg. Med. Chem. Lett. 2014, 22, 1961.
[2] Chien, S.-C.; Chen, M.-L.; Kuo, H.-T.; Tsai, Y.-C.; Lin, B.-F.; Kuo, Y.-H. J. Agric. Food Chem. 2008, 56, 7017.
[3] (a) Ho, S.-Y.; Alam, J.; Jeyaraj, D.-A.; Wang, W.; Lin, G.-R.; Ang, S.-H.; Tan, E.-S.-W.; Lee, M.-A.; Ke, Z.; Madan, B.; Virshup, D.-M.; Ding, L.-J.; Manoharan, V.; Chew, Y.-S.; Low, C.-B.; Pendharkar, V.; Sangthongpitag, K.; Hill, J.; Keller, T.-H.; Poulsen, A. J. Med. Chem. 2017, 60, 6678.
(b) Alam, J.; Poulsen, A.; Ho, S.-Y.; Wang, W.-L.; Duraiswamy, A. WO 2015094118, 2008[Chem. Abstr. 2015, 163, 132777].
[4] Kayser, S.; Levis, M.-J.; Schlenk, R.-F. Expert Rev. Clin. Pharmacol. 2017, 10, 1177.
(b) Levis, M. Blood 2017, 129, 3403.
[5] Shimokawa, J.; Chiyoda, K.; Umihara, H.; Fukuyama, T. Chem. Pharm. Bull. 2016, 64, 1239.
(b) Cai, S.-L.; Song, R.; Dong, H.-Q.; Lin, G.-Q.; Sun, X.-W. Org. Lett. 2016, 18, 1996.
[6] (a) Daly, M.-J.; Jones, G.-W.; Nicholls, P.-J.; Smith, H.-J.; Rowlands, M.-G.; Bunnett, M.-A. J. Med. Chem. 1986, 29, 520.
(b) Sharma, D.-K.; Rajput, V.-S.; Singh, S.; Sharma, R.; Khan, I. A.; Mukherjee, D. ChemistrySelect 2016, 1, 1954.
[7] (a) Driller, K.-M.; Klein, H.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 6041.
(b) Mathur, P.; Joshi, R.-K.; Rai, D.-K.; Jha, B.; Mobin, S.-M. Dalton. Trans. 2012, 41, 5045.
[8] Henon, H.; Messaoudi, S.; Hugon, B.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Tetrahedron 2005, 61, 5599.
[9] An, Y.-L.; Shao, Z.-Y.; Cheng, J.; Zhao, S.-Y. Synthesis 2013, 45, 2719.
[10] Lanke, V.; Bettadapur, K.-R.; Prabhu, K.-R. Org. Lett. 2015, 17, 4662.
[11] Muniraj, N.; Prabhu, K.-R. ACS Omega 2017, 2, 4470.
[12] Zhang, Z.; Han, S.; Tang, M.; Ackermann, L.; Li, J. Org. Lett. 2017, 19, 3315.
[13] Liu, S.-L.; Li, Y.; Guo, J.-R.; Yang, G.-C.; Li, X.-H.; Gong, J.-F.; Song, M.-P. Org. Lett. 2017, 19, 4042.
[14] Sherikar, M.-S.; Kapanaiah, R.; Lanke, V.; Prabhu, K.-R. Chem. Commun. 2018, 54, 11200.
[15] Pan, C.; Wang, Y.; Wu, C.; Yu, J.-T. Org. Biomol. Chem. 2018, 16, 693.
[16] Koltunov, K.-Y.; Prakash, G.-K.-S.; Rasul, G.; Olah, G.-A. Eur. J. Org. Chem. 2006, 4861.
[17] Yang, Z.-H.; Chen, Z.-H.; An, Y.-L.; Zhao, S.-Y. RSC Adv. 2016, 6, 23438.
[18] Bettadapur, K.-R.; Lanke, V.; Prabhu, K.-R. Org. Lett. 2015, 17, 4658.
[19] Mandal, R.; Emayavaramban, B.; Sundararaju, B. Org. Lett. 2018, 20, 2835.
[20] Li, F.; Zhou, Y.; Yang, H.; Liu, D.; Sun, B.; Zhang, F.-L. Org. Lett. 2018, 1, 146.
[21] Yu, J. T.; Chen, R.; Jia, H.; Pan, C. J. Org. Chem. 2018, 83, 12086.
[22] Han, S.-H.; Kim, S.; De, U.; Mishra, N.-K.; Park, J.; Sharma, S.; Kwak, J.-H.; Han, S.; Kim, H.-S.; Kim, I.-S. J. Org. Chem. 2016, 81, 12416.
[23] He, Q.; Yamaguchi, T.; Chatani, N. Org. Lett. 2017, 19, 4544.
[24] Chen, X.; Ren, J.; Xie, H.; Sun, W.; Sun, M.; Wu, B. Org. Chem. Front. 2018, 5, 184.
[25] Bettadapur, K.-R.; Lanke, V.; Prabhu, K.-R. Chem. Commun. 2017, 53, 6251.
[26] Mandal, A.; Sahoo, H.; Dana, S.; Baidya, M. Org. Lett. 2017, 19, 4138.
[27] Muniraj, N.; Prabhu, K.-R. J. Org. Chem. 2017, 82, 6913.
[28] Qrareya, H.; Ravelli, D.; Fagnoni, M.; Albinia, A. Adv. Synth. Catal. 2013, 355, 2891.
[29] Capaldo, L.; Buzzetti, L.; Merli, D.; Fagnoni, M.; Ravelli, D. J. Org. Chem. 2016, 81, 7102.
[30] Han, S.; Park, J.; Kim, S.; Lee, S.-H.; Sharma, S.; Mishra, N.-K.; Jung, Y.-H.; Kim, I.-S. Org. Lett. 2016, 18, 4666.
[31] (a) Cunha, S.; Rodovalho, W.; Azevedo, N. R.; Mendonca, M.-D.-O.; Lariucci, C.; Vencato, I. J. Brazil. Chem. Soc. 2002, 13, 629.
(b) Gomez-Torres, E.; Alonso, D.-A.; Gomez-Bengoa, E.; Najera, C. Eur. J. Org. Chem. 2013, 2013, 1434.
(c) Noeth, J.; Frankowski, K.-J.; Neuenswander, B.; Aube, J.; Reiser, O. J. Comb. Chem. 2008, 10, 456.
[32] Zhao, G.-L.; Xu, Y.-M.; Sunden, H.; Eriksson, L.; Sayah, M.; Cordova, A. Chem. Commun. 2007, 7, 734.
[33] Yu, F.; Jin, Z.; Huang, H.; Ye. T.; Liang, X.; Ye, J.-X. Org. Bio-mol. Chem. 2010, 8, 4767.
[34] Yu, F.; Sun, X.; Jin, Z.; Wen, S.; Liang, X.; Ye, J.-X. Chem. Commun. 2010, 46, 4589.
[35] Muramulla, S.; Ma, J.-A.; Zhao, J.-C.-G. Adv. Synth. Catal. 2013, 355, 1260.
[36] Vizcaino-Milla, P.; Sansano, J.-M.; Najera, C.; Fiser, B.; Gomez-Bengoa, E. Synthesis 2015, 47, 2199.
[37] Nakashima, K.; Kawada, M.; Hirashima, S.; Kato, M.; Koseki, Y.; Miura, T. Synlett 2015, 26, 1248.
[38] Wang, J.-J.; Dong, X.-J.; Wei, W.-T.; Yan, M. Tetrahedron:Asymmetry 2011, 22, 690.
[39] Bai, J.-F.; Wang, L.-L.; Peng, L.; Guo, Y.-L.; Jia, L.-N.; Tian, F.; He, G.-Y.; Xu, X.-Y.; Wang, L.-X. J. Org. Chem. 2012, 77, 2947.
[40] Shirakawa, S.; Terao, S. J.; He, R.; Maruoka, K. Chem. Commun. 2011, 47, 10557.
[41] Gomez-Torres, E.; Alonso, D. A.; Gomez-Bengoa, E.; Najera, C. Org. Lett. 2011, 13, 6106.
[42] Li, X.; Hu, S.; Xi, Z.; Zhang, L.; Luo, S.; Cheng, J.-P. J. Org. Chem. 2010, 75, 8697.
[43] Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C. Org. Lett. 2010, 12, 2896.
[44] Feng, J.; Zhang, Y.; Lin, L.; Yao, Q.; Liu, X.; Feng, X. Chem. Commun. 2015, 51, 10554.
[45] Yarlagadda, S.; Reddy, C.-R.; Ramesh, B.; Kumar, G.-R.; Sridhar, B.; Reddy, B.-V.-S. Eur. J. Org. Chem. 2018, 1364.
[46] Li, J.; Qiu, S.; Ye, X.; Zhu, B.; Liu, H.; Jiang, Z. J. Org. Chem. 2016, 81, 11916.
[47] Iyer, P.-S.; O'Malley, M.-M.; Lucas, M.-C. Tetrahedron Lett. 2007, 48, 4413.
[48] Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 4611.
[49] Berhal, F.; Wu, Z.; Genet, J.; Ayad, T.; Ratovelomanana-Vidal, V. J. Org. Chem. 2011, 76, 6320.
[50] Korenaga, T.; Ko, A.; Shimamda, K. J. Org. Chem. 2013, 78, 9975.
[51] Gopula, B.; Yang, S.-H.; Kuo, T.-S.; Hsieh, J.-C.; Wu, P.-Y.; Henschke, J.-P.; Wu, H.-L. Chem. Eur. J. 2015, 21, 11050.
[52] Kumar, V.; Mitra, R.; Bhattarai, S.; Nair, V.-A. Synth. Commun. 2011, 41, 392.
[53] Raycroft, M.-A.-R.; Racine, K.-E.; Rowley, C.-N.; Keillor, J.-W. J. Org. Chem. 2018, 83, 11674.
[54] Han, F.; Yang, L.; Li, Z.; Xia, C.-G. Org. Biomol. Chem. 2012, 10, 346.
[55] An, Y.-L.; Deng, Y.-X.; Zhang, W.; Zhao, S.-Y. Synthesis 2015, 47, 1581.
[56] Velchinskaya, E.; Petsushak, B.; Rogal, A. Chem. Heterocycl. Compd. 2007, 43, 695.
[57] Uno, B.-E.; Deibler, K.-K.; Villa, C.; Raghuraman, A.; Scheidt, K.-A. Adv. Synth. Catal. 2018, 360, 1719.
[58] Uno, B.-E.; Dicken, R.-D.; Redfern, L.-R.; Stern, C.-M.; Krzywicki, G.-G.; Scheidt, K.-A. Chem. Sci. 2018, 9, 1634.
[59] Jiang, Z.; Zhang, Y.; Ye, W.; Tan, C.-H. Tetrahedron Lett. 2007, 48, 51.
[60] Balint, E.; Takacs, J.; Drahos, L.; Keglevich, G. Heteroat. Chem. 2012, 23, 235.
[61] Molleti, N.; Bjornberg, C.; Kong, J.-Y. Org. Biomol. Chem. 2016, 14, 10695.
[62] (a) Bourderioux, A.; Routier, S.; Beneteau, V.; Merour, J.-Y. Tetrahedron 2007, 63, 9465.
(b) Bouissane, L.; Sestelo, J.-P.; Sarandeses, L. A. Org. Lett. 2009, 11, 1285.
(c) Awuah, E.; Capretta, A. J. Org. Chem. 2011, 76, 3122.
(d) Souffrin, A.; Croix, C.; Viaud-Massuard, M.-C. Eur. J. Org. Chem. 2012, 13, 2499
[63] Roshchin, A.-I.; Polunin, E.-V. Mendeleev Commun. 2008, 18, 332.
[64] Lim, L.-H.; Zhou, J. Org. Chem. Front. 2015, 2, 775.
[65] Jafarpour, F.; Shamsianpour, M.; Issazadeh, S.; Dorrani, M.; Hazrati, H. Tetrahedron 2017, 73, 1668.
[66] Jafarpour, F.; Shamsianpour, M. RSC Adv. 2016, 6, 103567.
[67] Yang, Z.-H.; An, Y.-L.; Chen, Y.; Shao, Z.-Y.; Zhao, S.-Y. Adv. Synth. Catal. 2016, 358, 3869.
[68] Dana, S.; Mandal, A.; Sahoo, H.; Baidya, M. Org. Lett. 2017, 19, 1902.
[69] An, Y.-L.; Zhang, H.-H.; Yang, Z.-H.; Lin, L.; Zhao, S.-Y. Eur. J. Org. Chem. 2016, 2016, 5405.
[70] Kong, D.-H.; An, Y.-L.; Shao, Z.-Y.; Zhao, S.-Y. J. Chem. Res. 2018, 42, 476.
[71] (a) Yang, Z.-H.; Tan, H.-R.; An, Y.-L.; Zhao, Y.-W.; Lin, H.-P.; Zhao, S.-Y. Adv. Synth. Catal. 2018, 360, 173.
(b) Yang, Z.-H.; Zhu, J.-N.; Jin, Z.-H.; Zheng, J.; Zhao, S.-Y. Synthesis 2018, 50, 4627.
[72] Yang, Z.-H.; Tan, H.-R.; Zhu, J.-N.; Zheng, J.; Zhao, S.-Y. Adv. Synth. Catal. 2018, 360, 1523.
[73] (a) Maruoka, H.; Okabe, F.; Koutake, Y.; Fujioka, T.; Yamagata, K. Heterocycles 2009, 77, 617.
(b) Bai, J.-F.; Guo, Y.-L.; Peng, L.; Jia, L.-N.; Xu, X.-Y.; Wang, L.-X. Tetrahedron 2013, 69, 1229.
(b) Petrelli, A.; Samain, E.; Pradeau, S.; Halila, S.; Fort, S. ChemBioChem 2017, 18, 206.
[74] Baker, J.-R.; Tedaldi, L.-M.; Aliev, A.-E. Chem. Commun. 2012, 48, 4725.
[75] Lin, C.; Zhen, L.; Cheng, Y.; Du, H.-J.; Zhao, H.; Wen, X.; Kong, L.-Y.; Xu, Q.-L.; Sun, H. Org. Lett. 2015, 17, 2684.
[76] Ding, G.; Wu, X.; Jiang, L.; Zhang, Z.; Xie, X. Org. Lett. 2017, 19, 6048.
[77] Qiu, S.; Lee, R.; Zhu, B.; Coote, M.-L.; Zhao, X.; Jiang, Z. J. Org. Chem. 2016, 81, 8061.
[78] Nishikawa, Y.; Nakano, S.; Tahira, Y.; Terazawa, K.; Yamazaki, K.; Kitamura, C.; Hara, O. Org. Lett. 2016, 18, 2004.
[79] Kumar, G.-V.; Govindaraju, M.; Renuka, N.; Khatoon, B.-B.-A.; Mylarappa, B.-N.; Kumar, K.-A. Rasayan J. Chem. 2012, 5, 338.
[80] Liu, G.-N.; Luo, R.-H.; Zhou, Y.; Zhang, X.-J.; Li, J.; Yang, L.-M.; Zheng, Y.-T.; Liu, H. Molecules 2016, 21, 1198/1.
[81] Zhang, X.-N.; Chen, G.-Q.; Tang, X.-Y.; Wei, Y.; Shi, M. Angew. Chem., Int. Ed. 2014, 53, 10768.
[82] Sharma, S.; Han, S. H.; Oh, Y.; Mishra, N.-K.; Lee, S.-H.; Oh, J.-S.; Kim, I.-S. Org. Lett. 2016, 18, 2568.
[83] Morita, T.; Akita, M.; Satoh, T.; Kakiuchi, F.; Miura, M. Org. Lett. 2016, 18, 4598.
[84] Yu, W.; Zhang, W.; Liu, Y.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2017, 4, 77.
[85] Zhu, C.; Falck, J.-R. Chem. Commun. 2012, 48, 1674.
[86] Miura, W.; Hirano, K.; Miura, M. Org. Lett. 2015, 17, 4034.
/
〈 |
|
〉 |