REVIEW

Progress in Total Syntheses of Dimeric Cyclotryptamine Alkaloids

  • Xianfu Shen ,
  • Tianfeng Peng ,
  • Yongyun Zhou ,
  • Yongkai Xi ,
  • Jingfeng Zhao ,
  • Xiaodong Yang ,
  • Hongbin Zhang
Expand
  • a Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, Yunnan
    b Key Laboratory of Natural Products Transformation and Utilization in Yunnan Province, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Kunming 650091

Received date: 2019-03-26

  Revised date: 2019-04-18

  Online published: 2019-05-10

Supported by

Project supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT17R94);The National Natural Science Foundation of China(2152197);The National Natural Science Foundation of China(21861032);The Natural Science Foundation of Yunnan Province(2018FD078);The Natural Science Foundation of Yunnan Province(2017FH001-020);The Qujing Normal University(2018QN002)

Abstract

As interesting synthetic targets, dimeric cyclotryptamine alkaloids bearing sterically hindered vicinal all-carbon quaternary stereocenters have attracted significant attention from the synthetic community. Stereocontrolled synthesis of the congested all-carbon quaternary stereocenters in these alkaloids presents a formidable challenge. This review summarizes the synthetic efforts towards dimeric cyclotryptamine alkaloids in the last twelve years.

Cite this article

Xianfu Shen , Tianfeng Peng , Yongyun Zhou , Yongkai Xi , Jingfeng Zhao , Xiaodong Yang , Hongbin Zhang . Progress in Total Syntheses of Dimeric Cyclotryptamine Alkaloids[J]. Chinese Journal of Organic Chemistry, 2019 , 39(10) : 2685 -2704 . DOI: 10.6023/cjoc201903058

References

[1] For selected review, see:
[1] (a) Crich, D.; Banerjee, A.; Acc. Chem. Res. 2007, 40, 151.
[1] (b) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; álvarez, M.; Chem. Eur. J. 2011, 17, 1388., 255.
[2] (a) Popp, J. L.; Musza, L. L.; Barrow, C. J.; Rudewicz, P. J Houck, D. R .; J. Antibiot. 1994, 47, 411.
[2] (b) Oleynek, J. J.; Sedlock, D. M.; Barrow, C. J.; Appell, K. C.; Casiano, F.; Haycock, D.; Ward, S. J.; Kaplita, P Gillum, A. M .; J. Antibiot. 1994, 47, 399.
[2] (c) Sedlock, D. M.; Barrow, C. J.; Brownell, J. E.; Hong, A.; Gillum, A. M.; Houck, , P. R .; J. Antibiot. 1994, 47, 391.
[3] Greiner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A .; Nat. Chem. Biol. 2005, 1, 143.
[4] Steven, A.; Overman, L. E. Angew. Chem. Int. Ed. 2007, 46, 5488.
[5] Schmidt, M. A.; Movassaghi, M . Synlett 2008,313.
[6] Woodward, R. B.; Yang, N. C.; Katz, T. J.; Clark, V. M.; Harley-Mason, , J.; Ingleby, R. F. J.; Sheppard, , N. Proc. Chem. Soc. 1960,76.
[7] Robinson, R.; Teuber, H. J . Chem. Ind. 1954,783.
[8] Kirby, G. W.; Shah, S. W.; Herbert, E. J . J. Chem. Soc. C 1969,1916.
[9] Steven, A.; Overman, L. E. Angew. Chem. Int. Ed. 2007, 46, 5488.
[10] Movassaghi, , M., Schmidt, , M. A. Angew. Chem. Int. Ed. 2007, 46, 3725.
[11] Movassaghi, M.; Schmidt. M., A.; Ashenhurst, , J. A. Angew. Chem. Int. Ed. 2008, 47, 1485.
[12] (a) Pe?rez-Balado, C.; de Lera, A?. R. Org. Lett. 2008, 10, 3701.
[12] (b) Pe?rez-Balado, C.; Rodríguez-Gran?a, P.; de Lera, A?. R. Chem. Eur. J. 2009, 15, 9928.
[13] Xie, W. Q.; Jiang, G. D.; Liu, H.; Hu, J. D.; Pan, X. X.; Zhang, H.; Wan, X. L.; Lai, Y. S.; Ma, , D. W. Angew. Chem. Int. Ed. 2013, 52, 12924.
[14] Peng, Y.; Luo, L.; Yan, C. S.; Zhang, J. J.; Wang, Y. W. J. Org. Chem. 2013, 78, 10960.
[15] Wada, M.; Murata, T.; Oikawa, H.; Oguri, H. Org. Biomol. Chem. 2014, 12, 298.
[16] Movassaghi., M.; Lathrop, . S. P. Chem. Sci. 2014, 5, 333.
[17] Li, Y. X.; Wang, H. X.; Ali, S.; Xia, X. F.; Liang, Y. M. Chem. Commun. 2012, 48, 2343
[18] Tadano, S.; Mukaeda, Y.; Ishikawa, H. Angew. Chem. Int. Ed. 2013, 52, 7990.
[19] Sun, D. Q.; Xing, C. Y.; Wang, X. Q.; Su, Z. Q.; Li, C. Z. Org. Chem. Front. 2014, 1, 956.
[20] Ghosh, S.; Chaudhuri, S.; Bisai, A. . Org. Lett 2015, 17, 1373.
[21] (a) Liang, K. J.; Deng, X.; Tong, X. G.; Li, D. S.; Ding, M.; Zhou, A. K.; Xia, C. F. Org. Lett. 2015, 17, 206.
[21] (b) Ding, M.; Liang, K. J.; Pan, R.; Zhang, H. B.; Xia, C. F. J. Org. Chem. 2015, 80, 10309.
[22] (a) Shen, X. F.; Zhou, Y. Y.; Xi, Y. K.; Zhao, J. F.; Zhang, H. B. Chem. Commun. 2015, 51, 14873.
[22] (b) Shen, X. F.; Zhou, Y. Y.; Xi, Y. K.; Zhao, J. F.; Zhang, H. B . Nat. Prod. Bioprospect. 2016, 6, 117.
[23] Mitsunuma, H.; Shibasaki, M.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2012, 51, 5217.
[24] Guo, C.; Song, J.; Huang, J.-Z.; Chen, P.-H.; Luo, S.-W.; Gong, L.-Z. Angew. Chem. Int. Ed. 2012, 51, 1046.
[25] Fang, C.-L.; Horne, S.; Taylor, N.; Rodrigo, R. J. Am. Chem. Soc. 1994, 116, 9480.
[26] Liu, R. R.; Zhang, J. L. Org. Lett. 2013, 15, 2266.
[27] (a) Link, J. T.; Overman, L. E. J. Am. Chem. Soc. 1996, 118, 8166.
[27] (b) Paone, D. V.; Overman, L. E. J. Am. Chem. Soc. 2001, 123, 9465.
[28] Trost, B. M.; Osipov, M. Angew. Chem. Int. Ed. 2013, 52, 9176.
[29] (a) Ghosh, S.; Bhunia, S.; Kakde, B. N.; De, S.; Bisai, A. Chem. Commun. 2014, 50, 2434.
[29] (b) Ghosh, S.; Chaudhuri, S.; Bisai, A. Chem. Eur. J. 2015, 21, 17479.
[29] (c) Babu, K. N.; Kinthada, L. K.; Das, P. P.; Bisai, A. Chem. Commun. 2018, 54, 7963.
[29] (d) Babu, , K. N.; Roy, A.; Singh, M.; Bisai, , A. Org. Lett. 2018, 20, 6327., 8548.
[29] (e) Kinthada, L. K.; Medisetty, S. R.; Parida, A.; Babu, K. N.; Bisai, A. J. Org. Chem. 2017, 82, 8548.
[30] Tang, X. D.; Li, S.; Guo, R.; Nie, J.; Ma, J. A. Org. Lett. 2015, 17, 1389.
[31] Chen, S.-K.; Ma, W.-Q.; Yan, Z.-B.; Zhang, F.-M.; Wang, S.-H.; Tu, Y.-Q.; Zhang, X.-M.; Tian, J.-M. J. Am. Chem. Soc. 2018, 140, 10099.
[32] Araki, T.; Manabe, Y.; Fujioka, K.; Yokoe, H.; Kanematsu, M.; Yoshida, M.; Shishido, K. . Tetrahedron Lett 2013, 54, 1012.
[33] Tayu, M.; Higuchi, K.; Ishizaki, T.; Kawasaki, T. . Org. Lett 2014, 16, 3613.
Options
Outlines

/