Chinese Journal of Organic Chemistry ›› 2019, Vol. 39 ›› Issue (10): 2685-2704.DOI: 10.6023/cjoc201903058 Previous Articles Next Articles
REVIEW
沈先福ab, 彭天凤a, 周永云b, 奚永开b, 赵静峰b, 羊晓东b, 张洪彬b*()
收稿日期:
2019-03-26
修回日期:
2019-04-18
发布日期:
2019-05-10
通讯作者:
张洪彬
E-mail:zhanghb@ynu.edu.cn
基金资助:
Shen Xianfuab, Peng Tianfenga, Zhou Yongyunb, Xi Yongkaib, Zhao Jingfengb, Yang Xiaodongb, Zhang Hongbinb*()
Received:
2019-03-26
Revised:
2019-04-18
Published:
2019-05-10
Contact:
Zhang Hongbin
E-mail:zhanghb@ynu.edu.cn
Supported by:
Share
Shen Xianfu, Peng Tianfeng, Zhou Yongyun, Xi Yongkai, Zhao Jingfeng, Yang Xiaodong, Zhang Hongbin. Progress in Total Syntheses of Dimeric Cyclotryptamine Alkaloids[J]. Chinese Journal of Organic Chemistry, 2019, 39(10): 2685-2704.
[1] | For selected review, see: |
(a) Crich, D.; Banerjee, A.; Acc. Chem. Res. 2007, 40, 151. | |
(b) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Álvarez, M.; Chem. Eur. J. 2011, 17, 1388., 255. | |
[2] |
(a) Popp, J. L.; Musza, L. L.; Barrow, C. J.; Rudewicz, P. J Houck, D. R .; J. Antibiot. 1994, 47, 411.
doi: 10.7164/antibiotics.47.411 |
(b) Oleynek, J. J.; Sedlock, D. M.; Barrow, C. J.; Appell, K. C.; Casiano, F.; Haycock, D.; Ward, S. J.; Kaplita, P Gillum, A. M .; J. Antibiot. 1994, 47, 399.
doi: 10.7164/antibiotics.47.411 |
|
(c) Sedlock, D. M.; Barrow, C. J.; Brownell, J. E.; Hong, A.; Gillum, A. M.; Houck, , P. R .; J. Antibiot. 1994, 47, 391.
doi: 10.7164/antibiotics.47.411 |
|
[3] |
Greiner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A .; Nat. Chem. Biol. 2005, 1, 143.
doi: 10.1038/nchembio721 |
[4] |
Steven, A.; Overman, L. E. Angew. Chem. Int. Ed. 2007, 46, 5488.
doi: 10.1002/(ISSN)1521-3773 |
[5] | Schmidt, M. A.; Movassaghi, M . Synlett 2008,313. |
[6] | Woodward, R. B.; Yang, N. C.; Katz, T. J.; Clark, V. M.; Harley-Mason, , J.; Ingleby, R. F. J.; Sheppard, , N. Proc. Chem. Soc. 1960,76. |
[7] | Robinson, R.; Teuber, H. J . Chem. Ind. 1954,783. |
[8] | Kirby, G. W.; Shah, S. W.; Herbert, E. J . J. Chem. Soc. C 1969,1916. |
[9] |
Steven, A.; Overman, L. E. Angew. Chem. Int. Ed. 2007, 46, 5488.
doi: 10.1002/(ISSN)1521-3773 |
[10] |
Movassaghi, , M., Schmidt, , M. A. Angew. Chem. Int. Ed. 2007, 46, 3725.
doi: 10.1002/(ISSN)1521-3773 |
[11] |
Movassaghi, M.; Schmidt. M., A.; Ashenhurst, , J. A. Angew. Chem. Int. Ed. 2008, 47, 1485.
doi: 10.1002/(ISSN)1521-3773 |
[12] |
(a) Pérez-Balado, C.; de Lera, Á. R. Org. Lett. 2008, 10, 3701.
doi: 10.1021/ol8013073 |
(b) Pérez-Balado, C.; Rodríguez-Graña, P.; de Lera, Á. R. Chem. Eur. J. 2009, 15, 9928.
doi: 10.1021/ol8013073 |
|
[13] |
Xie, W. Q.; Jiang, G. D.; Liu, H.; Hu, J. D.; Pan, X. X.; Zhang, H.; Wan, X. L.; Lai, Y. S.; Ma, , D. W. Angew. Chem. Int. Ed. 2013, 52, 12924.
doi: 10.1002/anie.201306774 |
[14] |
Peng, Y.; Luo, L.; Yan, C. S.; Zhang, J. J.; Wang, Y. W. J. Org. Chem. 2013, 78, 10960.
doi: 10.1021/jo401936v |
[15] |
Wada, M.; Murata, T.; Oikawa, H.; Oguri, H. Org. Biomol. Chem. 2014, 12, 298.
doi: 10.1039/C3OB41918E |
[16] |
Movassaghi., M.; Lathrop, . S. P. Chem. Sci. 2014, 5, 333.
doi: 10.1039/c3sc52451e |
[17] |
Li, Y. X.; Wang, H. X.; Ali, S.; Xia, X. F.; Liang, Y. M. Chem. Commun. 2012, 48, 2343
doi: 10.1039/c2cc16637b |
[18] |
Tadano, S.; Mukaeda, Y.; Ishikawa, H. Angew. Chem. Int. Ed. 2013, 52, 7990.
doi: 10.1002/anie.v52.31 |
[19] |
Sun, D. Q.; Xing, C. Y.; Wang, X. Q.; Su, Z. Q.; Li, C. Z. Org. Chem. Front. 2014, 1, 956.
doi: 10.1039/C4QO00165F |
[20] |
Ghosh, S.; Chaudhuri, S.; Bisai, A. . Org. Lett 2015, 17, 1373.
doi: 10.1021/acs.orglett.5b00032 |
[21] |
(a) Liang, K. J.; Deng, X.; Tong, X. G.; Li, D. S.; Ding, M.; Zhou, A. K.; Xia, C. F. Org. Lett. 2015, 17, 206.
doi: 10.1021/ol5032365 |
(b) Ding, M.; Liang, K. J.; Pan, R.; Zhang, H. B.; Xia, C. F. J. Org. Chem. 2015, 80, 10309.
doi: 10.1021/ol5032365 |
|
[22] |
(a) Shen, X. F.; Zhou, Y. Y.; Xi, Y. K.; Zhao, J. F.; Zhang, H. B. Chem. Commun. 2015, 51, 14873.
doi: 10.1039/C5CC05378A |
(b) Shen, X. F.; Zhou, Y. Y.; Xi, Y. K.; Zhao, J. F.; Zhang, H. B . Nat. Prod. Bioprospect. 2016, 6, 117.
doi: 10.1039/C5CC05378A |
|
[23] |
Mitsunuma, H.; Shibasaki, M.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2012, 51, 5217.
doi: 10.1002/anie.201201132 |
[24] |
Guo, C.; Song, J.; Huang, J.-Z.; Chen, P.-H.; Luo, S.-W.; Gong, L.-Z. Angew. Chem. Int. Ed. 2012, 51, 1046.
doi: 10.1002/anie.v51.4 |
[25] |
Fang, C.-L.; Horne, S.; Taylor, N.; Rodrigo, R. J. Am. Chem. Soc. 1994, 116, 9480.
doi: 10.1021/ja00100a010 |
[26] |
Liu, R. R.; Zhang, J. L. Org. Lett. 2013, 15, 2266.
doi: 10.1021/ol400845c |
[27] |
(a) Link, J. T.; Overman, L. E. J. Am. Chem. Soc. 1996, 118, 8166.
doi: 10.1021/ja961757m |
(b) Paone, D. V.; Overman, L. E. J. Am. Chem. Soc. 2001, 123, 9465.
doi: 10.1021/ja961757m |
|
[28] |
Trost, B. M.; Osipov, M. Angew. Chem. Int. Ed. 2013, 52, 9176.
doi: 10.1002/anie.201302805 |
[29] |
(a) Ghosh, S.; Bhunia, S.; Kakde, B. N.; De, S.; Bisai, A. Chem. Commun. 2014, 50, 2434.
doi: 10.1039/c3cc49064e |
(b) Ghosh, S.; Chaudhuri, S.; Bisai, A. Chem. Eur. J. 2015, 21, 17479.
doi: 10.1039/c3cc49064e |
|
(c) Babu, K. N.; Kinthada, L. K.; Das, P. P.; Bisai, A. Chem. Commun. 2018, 54, 7963.
doi: 10.1039/c3cc49064e |
|
(d) Babu, , K. N.; Roy, A.; Singh, M.; Bisai, , A. Org. Lett. 2018, 20, 6327., 8548.
doi: 10.1039/c3cc49064e |
|
(e) Kinthada, L. K.; Medisetty, S. R.; Parida, A.; Babu, K. N.; Bisai, A. J. Org. Chem. 2017, 82, 8548.
doi: 10.1039/c3cc49064e |
|
[30] |
Tang, X. D.; Li, S.; Guo, R.; Nie, J.; Ma, J. A. Org. Lett. 2015, 17, 1389.
doi: 10.1021/acs.orglett.5b00159 |
[31] |
Chen, S.-K.; Ma, W.-Q.; Yan, Z.-B.; Zhang, F.-M.; Wang, S.-H.; Tu, Y.-Q.; Zhang, X.-M.; Tian, J.-M. J. Am. Chem. Soc. 2018, 140, 10099.
doi: 10.1021/jacs.8b05386 |
[32] |
Araki, T.; Manabe, Y.; Fujioka, K.; Yokoe, H.; Kanematsu, M.; Yoshida, M.; Shishido, K. . Tetrahedron Lett 2013, 54, 1012.
doi: 10.1016/j.tetlet.2012.12.057 |
[33] |
Tayu, M.; Higuchi, K.; Ishizaki, T.; Kawasaki, T. . Org. Lett 2014, 16, 3613.
doi: 10.1021/ol5012373 |
[1] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[2] | Xingzhou Liu, Mingjia Yu, Jianhua Liang. Research Progress on the Synthesis of Protoberberine Skeleton and Its Anti-inflammatory Activity [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1325-1340. |
[3] | Hua Huang, Xin Li, Jianke Su, Qiuling Song. Difluorocarbene-Enabled Synthesis of 3-Substituted-2-oxoindoles from o-Vinylanilines [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1146-1156. |
[4] | Xuechun Zhao, Hui Fan, Yao Xu, Xiaoming Liao, Xiaoxiang Zhang. PPh3-Mediated Synthesis of 3-Hydroxy-2-oxindoles from o-Alkynylnitrobenzenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3997-4002. |
[5] | Jingping Hu, Wenqing Chen, Yuyang Jiang, Jing Xu. Synthesis of Tetracyclic Core Structure of Daphnezomines A and B [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 171-177. |
[6] | Xiangkai Kong, Yipeng Zhang, Lingjing Dang, Wen Chen, Hongbin Zhang. Research Progress in Synthesis of Indole Alkaloids Vindoline and Vindorosine [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2728-2744. |
[7] | Ran Gao, Weisheng Tian. Synthesis of Azedarachol and 2α,3α,20R-Trihydroxypregnane-16β-methacrylate [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2521-2526. |
[8] | Wei Chen, Simin Lei, Yuxin Lan, Haojian Xu, Pingbin Yu, Rui Zhang, Run Wu, Yang Chen. Design, Synthesis and Antifungal Activities of Novel Quinazolinone Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2164-2171. |
[9] | Shuai Huang, Yuming Feng, Jiali Ren, Chuanlun Yang, Lin Chen, Xianli Zhou. Diterpenoid Alkaloids from the Roots of Aconitum rockii and Their Antifeedant Activity [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1856-1862. |
[10] | Mengmeng Xu, Quan Cai. Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 698-713. |
[11] | Xiaoting Wu, Feng Zhao, Xiaochen Ji, Huawen Huang. Visible Light-Assisted Photocatalyst-Free Tandem Sulfonylation/ Cyclization for the Synthesis of Oxindoles [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4323-4331. |
[12] | Fangjie Li, Bin Lu, Yang Liu, Xiaoming Wang. Dirhodium/Xantphos-Catalyzed Tandem C—H Functionalization/Allylic Alkylation: Direct Access to 3-Acyl-3-allyl Oxindole Derivatives from N-Aryl-α-diazo-β-keto Amides [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3390-3397. |
[13] | Qisheng Gao, Qi Jing, Yang Chen, Jing Sun, Mingdong Zhou. Decarboxylative Amidation of Acrylamides with Oxamic Acids [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 257-265. |
[14] | Weiqing Ma, Ying Han, Jin Sun, Chaoguo Yan. Three-Component Reaction for Efficient Synthesis of Functionalized Spiro[cyclopentane-1,3'-indolines] [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3180-3191. |
[15] | Jun Zhao, Jian Xiao, Yawen Wang, Yu Peng. Advances on the Synthesis of Natural Products with Dihydrobenzofuran Skeleton via Oxidative [3+2] Cycloadditions [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 2933-2945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||