Chinese Journal of Organic Chemistry >
Synthesis of Pentafluoroethylated Pyridines via Cu-Catalyzed[3+3] Cycloaddition Reaction of Oxime Acetates
Received date: 2019-02-23
Revised date: 2019-05-16
Online published: 2019-05-28
Supported by
Project supported by the National Natural Science Foundation of China (No. 21801067), the Research Fund from Henan Normal University (No. 5101034011009), the Natural Science Research Program of Education Department of Henan Province (No. 18A150010), and the Start-Up Fund from Henan Normal University (No. qd17108).
An improved method for the synthesis of pentafluoroethylated pyridines through Cu-catalyzed[3+3] cyclo-addition reaction of oxime acetates is reported. The starting materials are more readily available, and these reactions occurred under mild conditions with broad substrate scope and excellent regioselectivity. Mechanistic studies have also been preformed.
Key words: pentafluoroethylated; pyridines; copper-catalyzed; oxime acetates
Yang Siqi , Li Xin , Peng Zhuojin , Yu Wenyan , Wang Guangxu , Jin Yalan , Zheng Bingbing , Dai Hongxue , Bai Dachang . Synthesis of Pentafluoroethylated Pyridines via Cu-Catalyzed[3+3] Cycloaddition Reaction of Oxime Acetates[J]. Chinese Journal of Organic Chemistry, 2019 , 39(6) : 1623 -1629 . DOI: 10.6023/cjoc201902025
[1] (a) Wong, D. T.; Perry, K. W.; Bymaster, F. P. Nat. Rev. Drug Discovery 2005, 4, 764.
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Hagmann, W. K. J.Med. Chem. 2008, 51, 4359.
(d) O'Hagan, D. J. Fluorine Chem.2010, 131, 1071.
(e) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(f) Wang, J.; Sánchez-Roselló, M.; Aceña, J.; Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[2] For selected reports/reviews:(a) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787.
(b) Manning, J. R.; Davies, H. M. L. J. Am. Chem. Soc. 2008, 130, 8602.
(c) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
(d) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570.
(e) Ackermann, L. Chem. Rev. 2011, 111, 1315.
(f) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885.
(g) Kumar, P.; Prescher, S.; Louie, J. Angew. Chem., Int. Ed. 2011, 50, 10694.
(h) Too, P. C.; Noji, T.; Lim, Y. J.; Li, X.; Chiba, S. Synlett 2011, 2789.
(i) Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Org. Lett. 2012, 14, 3032.
(j) Pi, C.; Cui, X.-L.; Liu,X.-Y.; Guo, M-X.; Zhang, H.-Y.; Wu, Y.-J. Org. Lett. 2014, 16, 5164.
(k) Huang, H.-W.; Ji, X.-C.; Wu, W.-Q.; Jiang, H.-F. Chem. Soc. Rev. 2015, 44, 1155.
(l) Xu, Y.; Hu, W.; Tang, X.; Zhao, J.; Wu, W.; Jiang, H. Chem. Commun. 2015, 51, 6843.
(m) Zhao, M.-N.; Ren, Z.-H.; Yu, L.; Wang, Y.-Y.; Guan, Z.-H. Org. Lett. 2016, 18, 1194.
(n) Hille, T.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 371.
[3] (a) Shevchenko, N. E.; Nenajdenko, V. G.; Röschenthaler, G.-V. J. Fluorine Chem. 2008, 129, 390.
(b) Prakash, G. K. S.; Wang, Y.; Mogi, R.; Hu, J.-B.; Mathew, T.; Olah, G. A. Org. Lett. 2010, 12, 2932.
(c) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (d) Mu, X; Chen, S. J,; Zhen, X. L.; Liu, G. S. Chem.-Eur. J. 2011, 17, 6039.
(d) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.
(e) Zhang, C. P.; Wang, Z. L.; Chen, Q. Y.; Zhang, C. T.; Gu, Y. C.; Xiao, J. C. Angew. Chem., Int. Ed. 2011, 50, 1896.
(f) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(g) Chu, L. L.; Qing, F. L. Acc. Chem. Res. 2014, 47, 1513.
(h) Landelle, G.; Panossian, A.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. Beilstein J. Org. Chem. 2013, 9, 2476.
(i) Yu, Y. B.; Wang, Z.; Zhang, X. G. Sci. China Chem. 2014, 57, 276.
(j) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48. 1227.
(k) Rong, J.; Deng, Li.; Tan, P.; Ni, C. F; Gu, Y. C.; Hu, J. B. Angew. Chem., Int. Ed. 2016, 55, 274.
(l) Ni, C. F.; Hu, M. Y.; Hu, J. B. Chem. Rev. 2015, 115, 765.
(m) Feng, Z.; Xiao,Y. L.; Zhang, X. G. Acc. Chem. Res., 2018, 51, 2264.
(n) Wang, F.; Chen, P. H.; Liu, G. S. Acc. Chem. Res. 2018, 51, 2036.
(o) Yang, B.; Yu, D. H.; Xu, X. H.; Qing, F. L. ACS Catal. 2018, 8, 2839.
[4] (a) Langlois, B. R.; Roques, N. J. Fluorine Chem. 2007, 128, 1318.
(b) Kremlev, M. M.; Tyrra, W.; Mushta, A. I.; Naumann, D.; Yaguposkii, Y. L. J. Fluorine Chem. 2010, 131, 212.
(c) Popov, I.; Lindeman, S.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 9286.
(d) Serizawa, H.; Aikawa, K.; Mikami, K. Org. Lett. 2014, 16, 3456.
[5] Yagupoi'skii, L. M.; Ⅱ'chenko, A. Y.; Kondratenko, N. V. Russ. Chem. Rev. 1974, 43, 32.
[6] (a) Kobayashi, Y. J. Chem. Soc., Perkin Trans. 1 1980, 661.
(b) Wiermers, D. M.; Burton, D. J. J. Am. Soc. Chem. 1986, 108, 832.
(c) Urata, H.; Fuchikami, T. Tetrahedron Lett. 1991, 32, 91.
(d) Carr, G. E.; Chambers, R. D.; Holmes, T. F.; Parker, D. G. J. Chem. Soc., Perkin Trans. 1 1988, 921.
[7] (a) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 536.
(b) Mormino, M. G.; Fier, P. S.; Hartwig, J. F. Org. Lett. 2014, 16, 1744.
[8] (a) Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2013, 135, 12584.
(b) Serizawa, H.; Aikawa, K.; Mikami, K. Org. Lett. 2014, 16, 3456.
[9] (a) Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2014, 79, 10434.
(b) Zhu, J. S.; Li, Y. G.; Ni, C. F.; Shen, Q. L. Chin. J. Chem. 2016, 34, 662.
(c) Liu, Y. F.; Ge, H.M.; Lu, L.; Shen, Q. L. Chin. J. Org. Chem. 2019, 39, 257.
[10] Xie, Q. Q.; Li, L. C.; Zhu, Z. Y.; Zhang, R. Y.; Ni, C. F.; Hu, J. B. Angew. Chem., Int. Ed. 2018, 57, 13211.
[11] Bai, D. C.; Wang, X. L.; Zheng, G. F.; Li, X. W. Angew. Chem., Int. Ed. 2018, 57, 6633.
[12] (a) Tang, X.-D.; Huang, L.-B.; Qi, C.-R.; Wu, W.-Q.; Jiang, H.-F. Chem. Commun. 2013, 49, 9597.
(b) Ran, L.-F.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Green Chem. 2014, 16, 112.
(c) Du, W.; Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem. Commun. 2014, 50, 7437.
(d) Faulkner, A.; Race, N. J.; Scott, J. S.; Bower, J. F. Chem. Sci. 2014, 5, 2416.
(e) Zhu, C.-L.; Zeng, H.; Chen, F.-L.; Liu, C.; Zhu, R.; Wu, W.-Q.; Jiang, H.-F. Org. Chem. Front. 2018, 5, 571.
(f) Tang, X. D.; Wu, W. Q.; Zeng, W.; Jiang, H. F. Acc. Chem. Res. 2018, 51, 1092.
/
〈 |
|
〉 |