Chinese Journal of Organic Chemistry >
Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide
Received date: 2019-04-09
Revised date: 2019-05-14
Online published: 2019-05-28
Supported by
Project supported by the National Natural Science Foundation of China(21266019);the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No. 2015MS0204)
Atom-efficient [2+2+2] cycloaddition reaction of alkynes in green solvent supercritical carbon dioxide (ScCO2) is an environmentally friendly reaction process that conforms to the principles of green chemistry. Cyclotrimerization of terminal alkynes catalyzed by Co2(CO)8 in pure ScCO2 has been studied to obtain 1,2,4-trisubstituted benzene derivatives with excellent selectivity. The reaction conditions for the cyclotrimerization were optimized, such as concentration of catalyst, CO2 pressure, reaction temperature and time. The solubility and phase behavior of the reaction materials and catalysts in ScCO2 medium were discussed, and the mechanism of Co2(CO)8 catalyzed cyclotrimerization of terminal alkynes was assumed. The reaction substrate was extended from C≡C (alkyne) to C≡N (nitrile), and the alkyne-nitrile cycloaddition reaction in ScCO2 was preliminary explored. Our optimized catalytic system for the cyclotrimerization of terminal alkynes exhibited wide substrate scope and high product selectivity, in which no organic co-solvent or additives were added. It provided a green synthetic method for 1,2,4-trisubstituted benzenes.
Yaqi Wang, , Qiang Yin, , Dun Guo, , Limin, Sun, Qi Han, , Hailong Hong, , Quanling Suo, , Quanling Suo. . Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide[J]. Chinese Journal of Organic Chemistry, 2019 , 39(10) : 2898 -2905 . DOI: 10.6023/cjoc201904021
[1] | Mykhailiuk, P. K . Org. Biomol. Chem. 2019, 17, 2839. |
[2] | Chopade, P. R.; Louie, J . Adv. Synth. Catal. 2006, 348, 2307. |
[3] | (a) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M . Cotrimerizations of Acetylenic Compounds, John Wiley & Sons, Inc., New Jersey, 2007, pp. 1~ 302. |
[3] | (b) Kotha, S.; Lahiri, K.; Sreevani, G . Synlett 2018, 29, 2342. |
[4] | Zhang, N.; Wang, Q.; Shi, W. Z. Introduction to Modern Chemical Industry, China Petrochemical Press Co. Ltd, Beijing, 2013, p. 284 (in Chinese). |
[4] | ( 张娜, 王强, 时维振 , 现代化工导论, 中国石化出版社, 北京, 2013, p. 284.) |
[5] | Xue, H.; Martyn, P . Chem. Soc. Rev. 2012, 41, 1428. |
[6] | Skouta, R . Green Chem. Lett. Rev. 2009, 2, 121. |
[7] | (a) Qi, Z. R.; Jiang, H. F. . Prog. Chem. 2010, 22, 1274 (in Chinese). |
[7] | ( 戚朝荣, 江焕峰 , 化学进展, 2010, 22, 1274.) |
[7] | (b) Olmos, A.; Asensio, G.; Pérez, P. J . ACS Catal. 2016, 6 4265. |
[7] | (c) Li, J. H.; Jia, L. Q.; Jiang, H. F . Chin. J. Org. Chem. 2000, 20 293 (in Chinese). |
[7] | ( 李金恒, 贾兰齐, 江焕峰 , 有机化学, 2000, 20 293.) |
[7] | (d) Liu, W. J.; Liang, Y.; Tang, S.; Li, J. H . Chin. J. Org. Chem. 2004, 24 1553 (in Chinese). |
[7] | ( 刘文杰, 梁云, 唐石, 李金恒 , 有机化学, 2004, 24 1553.) |
[8] | (a) Chatterjee, M.; Ishizaka, T.; Kawanami, H . Selective Hydrogenation in Supercritical Carbon Dioxide Using Metal Supported Heterogeneous Catalyst, American Chemical Society, Washington, dC, 2015, pp. 191~ 250. |
[8] | (b) Ichikawa, S.; Seki, T.; Ikariya, T . Adv. Synth. Catal. 2014, 356 2643. |
[9] | (a) Wang, X.; Kawanami, H . Appl. Catal., A 2008, 349 86. |
[9] | (b) Bourne, R. A.; Xue, H.; Martyn, P.; George, M. W . Angew. Chem., Int. Ed. 2010, 48 5322. |
[10] | (a) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Han, L. M . Tetrahedron Lett. 2014, 55 3878. |
[10] | (b) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Han, L. M . Chin. J. Org. Chem. 2014, 34 2172 (in Chinese). |
[10] | ( 李发旺, 索全伶, 洪海龙, 竺宁, 王亚琦, 韩利民 , 有机化学, 2014, 34 2172.) |
[11] | (a) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Guo, L. L.; Han, L. M . J. Supercrit. Fluids 2014, 92 70. |
[11] | (b) Wang, Y. L.; Suo, Q. L.; Han, L. M.; Guo, L. L.; Wang, Y.; Li, F. W . Tetrahedron. 2018, 74 1918. |
[12] | (a) Cheng, J. S.; Jiang, H. F . Eur. J. Org. Chem. 2004, 643. |
[12] | (b) Jiang, H. F . Curr. Org. Chem. 2005, 9 289. |
[12] | (c) Li, J. H . Acta Chim. Sinica 2004, 62 341 (in Chinese). |
[12] | ( 李金恒 , 化学学报, 2004, 62 341.) |
[12] | (d) Montilla, F.; Avilés, T.; Casimiro, T.; Ricardo, A. A.; Ponte, M. N. D . J. Organomet. Chem. 2001, 632 113. |
[13] | (a) Casimiro, T.; Montilla, F.; Garcia, S.; Avilés, T.; Raeissi, S.; Shariati, A.; Peters, C. J.; Ponte, M. N. D.; Aguiar-Ricardo, A. J. Supercrit. Fluids 2004, 31, 1. |
[13] | (b) Kazemi, S.; Belandria, V.; Janssen, N.; Richon, D.; Peters, C. J.; Kroon, M. C. J. Supercrit. Fluids 2012, 72, 320. |
[13] | (c) Long, J. J.; Cui, C. L.; Zhang, Y. Q.; Yuan, G. H . Dyes Pigm. 2015, 115 88. |
[14] | Kaganovich, V. S.; Rybinskaya, M. I . J. Organomet. Chem. 1988, 344, 383. |
[15] | Baxter, R. J.; Knox, G. R.; Moir, J. H.; Pauson, P. L.; Spicer, M. D . Organometallics. 1999, 18 206. |
[16] | Wang, Y. Q.; Han, L. M.; Suo, Q. L.; Zhu, N.; Hao, J. M.; Xie, R. J . Polyhedron. 2013, 54 221. |
[17] | (a) Giuliana Gervasio, E. S . J. Organomet. Chem. 1993, 44 203. |
[17] | (b) Cetini, G.; Gambino, O.; Rossetti, R.; Sappa, E. J. Organomet. Chem. 1967, 8 149. |
[17] | (c) Wakatsuki, Y.; Nomura, O.; Kitaura, K.; Morokuma, K.; Yamazaki, H. J. Am. Chem. Soc. 1983, 105 1907. |
[17] | (d) Peng, W.; Yi, Z.; Fan, Q. C.; Hao, F.; Xie, Y. M.; King, R. B.; Schaefer, I. H. F . Organometallics 2014, 33 2352. |
[17] | (e) Chen, Z.; Liu, J.; Evans, A. J.; Alberch, L.; Wei, A . Chem. Mater. 2012, 26, 941. |
[18] | Stockis, A.; Hoffmann, R . J. Am. Chem. Soc. 1980, 102, 2952. |
[19] | Pittman, C. U.; Smith, L. R . J. Organomet. Chem. 1975, 90, 203. |
[20] | Sugahara, T.; Guo, J. D.; Sasamori, T.; Nagase, S.; Tokitoh, N . Angew. Chem., Int. Ed. 2018, 57, 3499. |
[21] | Xu, L. M.; Yu, R. C.; Wang, Y. F.; Chen, J. H.; Yang, Z . J. Org. Chem. 2014, 44, 5744. |
[22] | Riache, N.; Dery, A.; Callens, E.; Poater, A.; Basset, J. M . Organometallics. 2015, 34 690. |
/
〈 |
|
〉 |