Chinese Journal of Organic Chemistry ›› 2019, Vol. 39 ›› Issue (10): 2898-2905.DOI: 10.6023/cjoc201904021 Previous Articles Next Articles
ARTICLES
王亚琦, 尹强, 郭墩, 韩利民, 孙琪, 洪海龙, 索全伶*()
收稿日期:
2019-04-09
修回日期:
2019-05-14
发布日期:
2019-05-28
通讯作者:
索全伶
E-mail:szj@imut.edu.cn
基金资助:
Wang, Yaqi, Yin, Qiang, Guo, Dun, Han, Limin, Sun, Qi, Hong, Hailong, Suo, Quanling, Suo. Quanling*()
Received:
2019-04-09
Revised:
2019-05-14
Published:
2019-05-28
Contact:
Suo. Quanling
E-mail:szj@imut.edu.cn
Supported by:
Share
Wang, Yaqi, Yin, Qiang, Guo, Dun, Han, Limin, Sun, Qi, Hong, Hailong, Suo, Quanling, Suo. Quanling. Carbonyl Cobalt-Catalyzed Cyclotrimerization of Terminal Alkynes in Supercritical Carbon Dioxide[J]. Chinese Journal of Organic Chemistry, 2019, 39(10): 2898-2905.
Entry | Catalyst (mol%) | PCO2/MPa | T/℃ | Time/h | Yieldb/% of 1a |
---|---|---|---|---|---|
1 | CoCl2?6H2O (15) | 8 | 80 | 10 | 16 |
2 | Co (15) | 8 | 80 | 10 | 21 |
3 | CpCo(CO)2 (15) | 8 | 80 | 10 | 47 |
4 | Co2(CO)8 (15) | 8 | 80 | 10 | 62 |
5 | Co2(CO)8 (5) | 8 | 80 | 10 | 15 |
6 | Co2(CO)8 (10) | 8 | 80 | 10 | 25 |
7 | Co2(CO)8 (20) | 8 | 80 | 10 | 52 |
8 | Co2(CO)8 (15) | 8 | 60 | 10 | 19 |
9 | Co2(CO)8 (15) | 8 | 70 | 10 | 43 |
10 | Co2(CO)8 (15) | 8 | 90 | 10 | 59 |
11 | Co2(CO)8 (15) | 10 | 80 | 10 | 45 |
12 | Co2(CO)8 (15) | 12 | 80 | 10 | 16 |
13 | Co2(CO)8 (15) | 8 | 80 | 6 | 38 |
14 | Co2(CO)8 (15) | 8 | 80 | 8 | 42 |
15 | Co2(CO)8 (15) | 8 | 80 | 12 | 46 |
Entry | Catalyst (mol%) | PCO2/MPa | T/℃ | Time/h | Yieldb/% of 1a |
---|---|---|---|---|---|
1 | CoCl2?6H2O (15) | 8 | 80 | 10 | 16 |
2 | Co (15) | 8 | 80 | 10 | 21 |
3 | CpCo(CO)2 (15) | 8 | 80 | 10 | 47 |
4 | Co2(CO)8 (15) | 8 | 80 | 10 | 62 |
5 | Co2(CO)8 (5) | 8 | 80 | 10 | 15 |
6 | Co2(CO)8 (10) | 8 | 80 | 10 | 25 |
7 | Co2(CO)8 (20) | 8 | 80 | 10 | 52 |
8 | Co2(CO)8 (15) | 8 | 60 | 10 | 19 |
9 | Co2(CO)8 (15) | 8 | 70 | 10 | 43 |
10 | Co2(CO)8 (15) | 8 | 90 | 10 | 59 |
11 | Co2(CO)8 (15) | 10 | 80 | 10 | 45 |
12 | Co2(CO)8 (15) | 12 | 80 | 10 | 16 |
13 | Co2(CO)8 (15) | 8 | 80 | 6 | 38 |
14 | Co2(CO)8 (15) | 8 | 80 | 8 | 42 |
15 | Co2(CO)8 (15) | 8 | 80 | 12 | 46 |
Entry | Alkyneb | Catalyst | Solvent | Yieldc/% | ||
---|---|---|---|---|---|---|
b | b' | a | ||||
1d | 1 | Co2(CO)8 | ScCO2 | — | — | 29 |
2d | 7 | Co2(CO)8 | ScCO2 | — | — | 36 |
3e | 7 | CpCo(CO)2 | ScCO2 | 30 | 10 | 17 |
4e | 7 | Co2(CO)6(μ2-η2-FcC≡CH) | ScCO2 | 8 | 2 | 51 |
5f | 7 | Co2(CO)8 | Toluene | — | — | 55 |
6f | 7 | CpCo(CO)2 | Toluene | 51 | 22 | 10 |
7f | 7 | Co2(CO)6(μ2-η2-FcC≡CH) | Toluene | 9 | 4 | 38 |
Entry | Alkyneb | Catalyst | Solvent | Yieldc/% | ||
---|---|---|---|---|---|---|
b | b' | a | ||||
1d | 1 | Co2(CO)8 | ScCO2 | — | — | 29 |
2d | 7 | Co2(CO)8 | ScCO2 | — | — | 36 |
3e | 7 | CpCo(CO)2 | ScCO2 | 30 | 10 | 17 |
4e | 7 | Co2(CO)6(μ2-η2-FcC≡CH) | ScCO2 | 8 | 2 | 51 |
5f | 7 | Co2(CO)8 | Toluene | — | — | 55 |
6f | 7 | CpCo(CO)2 | Toluene | 51 | 22 | 10 |
7f | 7 | Co2(CO)6(μ2-η2-FcC≡CH) | Toluene | 9 | 4 | 38 |
[1] |
Mykhailiuk, P. K . Org. Biomol. Chem. 2019, 17, 2839.
doi: 10.1039/C8OB02812E |
[2] |
Chopade, P. R.; Louie, J . Adv. Synth. Catal. 2006, 348, 2307.
doi: 10.1002/(ISSN)1615-4169 |
[3] | (a) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M . Cotrimerizations of Acetylenic Compounds, John Wiley & Sons, Inc., New Jersey, 2007, pp. 1~ 302. |
(b) Kotha, S.; Lahiri, K.; Sreevani, G . Synlett 2018, 29, 2342. | |
[4] | Zhang, N.; Wang, Q.; Shi, W. Z. Introduction to Modern Chemical Industry, China Petrochemical Press Co. Ltd, Beijing, 2013, p. 284 (in Chinese). |
( 张娜, 王强, 时维振 , 现代化工导论, 中国石化出版社, 北京, 2013, p. 284.) | |
[5] |
Xue, H.; Martyn, P . Chem. Soc. Rev. 2012, 41, 1428.
doi: 10.1039/c2cs15314a |
[6] |
Skouta, R . Green Chem. Lett. Rev. 2009, 2, 121.
doi: 10.1080/17518250903230001 |
[7] | (a) Qi, Z. R.; Jiang, H. F. . Prog. Chem. 2010, 22, 1274 (in Chinese). |
( 戚朝荣, 江焕峰 , 化学进展, 2010, 22, 1274.) | |
(b) Olmos, A.; Asensio, G.; Pérez, P. J . ACS Catal. 2016, 6 4265. | |
(c) Li, J. H.; Jia, L. Q.; Jiang, H. F . Chin. J. Org. Chem. 2000, 20 293 (in Chinese). | |
( 李金恒, 贾兰齐, 江焕峰 , 有机化学, 2000, 20 293.) | |
(d) Liu, W. J.; Liang, Y.; Tang, S.; Li, J. H . Chin. J. Org. Chem. 2004, 24 1553 (in Chinese). | |
( 刘文杰, 梁云, 唐石, 李金恒 , 有机化学, 2004, 24 1553.) | |
[8] | (a) Chatterjee, M.; Ishizaka, T.; Kawanami, H . Selective Hydrogenation in Supercritical Carbon Dioxide Using Metal Supported Heterogeneous Catalyst, American Chemical Society, Washington, dC, 2015, pp. 191~ 250. |
(b) Ichikawa, S.; Seki, T.; Ikariya, T . Adv. Synth. Catal. 2014, 356 2643. | |
[9] |
(a) Wang, X.; Kawanami, H . Appl. Catal., A 2008, 349 86.
doi: 10.1016/j.apcata.2008.07.007 |
(b) Bourne, R. A.; Xue, H.; Martyn, P.; George, M. W . Angew. Chem., Int. Ed. 2010, 48 5322.
doi: 10.1016/j.apcata.2008.07.007 |
|
[10] |
(a) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Han, L. M . Tetrahedron Lett. 2014, 55 3878.
doi: 10.1016/j.tetlet.2014.05.024 |
(b) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Han, L. M . Chin. J. Org. Chem. 2014, 34 2172 (in Chinese).
doi: 10.1016/j.tetlet.2014.05.024 |
|
( 李发旺, 索全伶, 洪海龙, 竺宁, 王亚琦, 韩利民 , 有机化学, 2014, 34 2172.)
doi: 10.1016/j.tetlet.2014.05.024 |
|
[11] |
(a) Li, F. W.; Suo, Q. L.; Hong, H. L.; Zhu, N.; Wang, Y. Q.; Guo, L. L.; Han, L. M . J. Supercrit. Fluids 2014, 92 70.
doi: 10.1016/j.supflu.2014.05.005 |
(b) Wang, Y. L.; Suo, Q. L.; Han, L. M.; Guo, L. L.; Wang, Y.; Li, F. W . Tetrahedron. 2018, 74 1918.
doi: 10.1016/j.supflu.2014.05.005 |
|
[12] |
(a) Cheng, J. S.; Jiang, H. F . Eur. J. Org. Chem. 2004, 643.
doi: 10.1002/(ISSN)1099-0690 |
(b) Jiang, H. F . Curr. Org. Chem. 2005, 9 289.
doi: 10.1002/(ISSN)1099-0690 |
|
(c) Li, J. H . Acta Chim. Sinica 2004, 62 341 (in Chinese).
doi: 10.1002/(ISSN)1099-0690 |
|
( 李金恒 , 化学学报, 2004, 62 341.)
doi: 10.1002/(ISSN)1099-0690 |
|
(d) Montilla, F.; Avilés, T.; Casimiro, T.; Ricardo, A. A.; Ponte, M. N. D . J. Organomet. Chem. 2001, 632 113.
doi: 10.1002/(ISSN)1099-0690 |
|
[13] |
(a) Casimiro, T.; Montilla, F.; Garcia, S.; Avilés, T.; Raeissi, S.; Shariati, A.; Peters, C. J.; Ponte, M. N. D.; Aguiar-Ricardo, A. J. Supercrit. Fluids 2004, 31, 1.
doi: 10.1016/j.supflu.2003.09.017 |
(b) Kazemi, S.; Belandria, V.; Janssen, N.; Richon, D.; Peters, C. J.; Kroon, M. C. J. Supercrit. Fluids 2012, 72, 320.
doi: 10.1016/j.supflu.2003.09.017 |
|
(c) Long, J. J.; Cui, C. L.; Zhang, Y. Q.; Yuan, G. H . Dyes Pigm. 2015, 115 88.
doi: 10.1016/j.supflu.2003.09.017 |
|
[14] |
Kaganovich, V. S.; Rybinskaya, M. I . J. Organomet. Chem. 1988, 344, 383.
doi: 10.1016/0022-328X(88)80192-X |
[15] |
Baxter, R. J.; Knox, G. R.; Moir, J. H.; Pauson, P. L.; Spicer, M. D . Organometallics. 1999, 18 206.
doi: 10.1021/om980545q |
[16] |
Wang, Y. Q.; Han, L. M.; Suo, Q. L.; Zhu, N.; Hao, J. M.; Xie, R. J . Polyhedron. 2013, 54 221.
doi: 10.1016/j.poly.2013.02.043 |
[17] | (a) Giuliana Gervasio, E. S . J. Organomet. Chem. 1993, 44 203. |
(b) Cetini, G.; Gambino, O.; Rossetti, R.; Sappa, E. J. Organomet. Chem. 1967, 8 149. | |
(c) Wakatsuki, Y.; Nomura, O.; Kitaura, K.; Morokuma, K.; Yamazaki, H. J. Am. Chem. Soc. 1983, 105 1907. | |
(d) Peng, W.; Yi, Z.; Fan, Q. C.; Hao, F.; Xie, Y. M.; King, R. B.; Schaefer, I. H. F . Organometallics 2014, 33 2352. | |
(e) Chen, Z.; Liu, J.; Evans, A. J.; Alberch, L.; Wei, A . Chem. Mater. 2012, 26, 941. | |
[18] |
Stockis, A.; Hoffmann, R . J. Am. Chem. Soc. 1980, 102, 2952.
doi: 10.1021/ja00529a015 |
[19] |
Pittman, C. U.; Smith, L. R . J. Organomet. Chem. 1975, 90, 203.
doi: 10.1016/S0022-328X(00)92113-2 |
[20] |
Sugahara, T.; Guo, J. D.; Sasamori, T.; Nagase, S.; Tokitoh, N . Angew. Chem., Int. Ed. 2018, 57, 3499.
doi: 10.1002/anie.201801222 |
[21] | Xu, L. M.; Yu, R. C.; Wang, Y. F.; Chen, J. H.; Yang, Z . J. Org. Chem. 2014, 44, 5744. |
[22] |
Riache, N.; Dery, A.; Callens, E.; Poater, A.; Basset, J. M . Organometallics. 2015, 34 690.
doi: 10.1021/om500684e |
[1] | Fei Chen, Sheng Tao, Ning Liu, Bin Dai. CNN-Type Binuclear Cu(I) Complexes Catalyzed Direct Carboxylation via the Fixation of CO2 at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2471-2480. |
[2] | Liwen Ma, Xiaoye Wei, Zilin Zhao, Ang Zhao, Xiangwen Deng, Bingnan Huo, Gang Ma, Chunfang Zhang. Theoretical Study on the Catalytic Mechanism of Copper with Various Valence for the Terminal Alkyne Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1811-1819. |
[3] | Yinyin Wang, Xiaowan Lin, Piao Zhang, Meihua Shen, Huadong Xu, Defeng Xu. Design and Synthesis of Pyridine and 1,3,5-Triazine PNP Pincer Ligands and Their Application in Cobalt Catalyzed Semihydrogenation of Terminal Alkynes [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3312-3320. |
[4] | Jingru Liang, Bingying Wang, Chengyin Huang, Xiaojun Ye, Yanmei Wen. Synthesis of Symmetrical (E,E)-1,4-Diaryl-1,3-butadienes by One-Pot Method [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 2116-2120. |
[5] | Peng Zhou, Shangwei Feng, Huihua Qiu, Jiantao Zhang. Sodiump-Toluenesulfinate/KI-Mediated Aerobic Oxidative Iodination of Terminal Alkynes for Synthesis of 1-Iodoalkynes and 1,3-Diynes [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 394-399. |
[6] | Yao Ming, Zhang Jingjing, Yang Sen, Xiong Hangxing. γ-Aluminum Oxide-Mediated Iodination of Terminal Alkynes [J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2153-2158. |
[7] | Hu Zhifang, Peng Lifen, Qiu Renhua, Orita Akihiro. Recent Progress of Protecting Groups for Terminal Alkynes [J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3112-3119. |
[8] | Ma Nan, Zeng Xianghua. Cu2O-Catalyzed Green Oxidative Terminal Alkynes Homocoupling without Bases [J]. Chin. J. Org. Chem., 2018, 38(6): 1556-1561. |
[9] | Qi Haitang, Song Guanglin, Quan Zhengjun, Wang Xicun. CuSO4·5H2O/NaAsc-Catalyzed Sonogashira Coupling Reaction of Aryl Iodides and Terminal Alkynes [J]. Chin. J. Org. Chem., 2017, 37(7): 1855-1859. |
[10] | Guan Zhipeng, Shi Yao, Shi Wei, Chen Hao. Synthesis of Terminal Alkynes/Diynes through Deprotection of Acetone Protected Alkynes under Mild Conditions [J]. Chin. J. Org. Chem., 2017, 37(2): 418-422. |
[11] | Li Fuwei, Wang Xiaolong, Yu Haitao. Preparation of 1,3,5-Trisubstituted Pyrazoles with Cascade Reaction Catalyzed by Cu between Hydrazonoyl Halide and Terminal Alkynes [J]. Chin. J. Org. Chem., 2016, 36(5): 1127-1132. |
[12] | Wang Chao, Deng Nan, Wang Lingling, Xu Dingjian, Yao Xiaoquan. Cu-Ag Bimetallic Nanoparticles Catalyzed Addition of Terminal Alkynes to Aldehydes [J]. Chin. J. Org. Chem., 2016, 36(5): 1034-1043. |
[13] | Li Yibiao, Cheng Liang, Chen Lu, Li Bin, Sun Ning, Qing Ning. One-Pot Synthesis of Substituted Thiophene and Furan Derivatives from Terminal Alkynes [J]. Chin. J. Org. Chem., 2016, 36(10): 2426-2436. |
[14] | Wu Gongde, Wang Xiaoli, Zhang Liming, Zhang Fang, Liu Xianfeng, Liu Congrong. One-Step Synthesis of 2,4-Disubstituted Thiazoles in Au(I) Complex/Zinc Salt Catalytic System [J]. Chin. J. Org. Chem., 2015, 35(12): 2537-2544. |
[15] | Yang Zhenping, Wang Bingnan, Xu Xiaoliang, Wang Hong, Li Xiaonian. Dimerization Coupling Reaction of Terminal Alkyne Promoted by CuI/DEAD [J]. Chin. J. Org. Chem., 2015, 35(1): 207-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||