REVIEW

Recent Advances of the Synthesis of Indolines by Unactivated Alkenes

  • Yingjie Liu ,
  • Liqing Lin ,
  • Yinghui Han ,
  • Xin Zhang
Expand
  • a School of Pharmacy, Harbin University of Commerce, Harbin 150076
    b Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001

Received date: 2019-04-06

  Revised date: 2019-05-27

  Online published: 2019-06-12

Supported by

Project supported by the Program of Young Innovators of Education Department of Heilongjiang Province(UNPYSCT-2016181)

Abstract

Indolines, an important class of heterocycles with a wide range of biological properties, are a key structural motif in numerous natural products and biologically active compounds. As a result, efficient methods for indolines synthesis have been the subject of extensive studies. In this review, recent studies on the synthesis of various functionalized indolines using unactivated alkenes are described. It involves radical addition/cyclization reaction in the presence of oxidizing agent, which is usually carried out under neutral reaction conditions using readily available oxidizing agents and different transition metals or under metal-free as catalysts.

Cite this article

Yingjie Liu , Liqing Lin , Yinghui Han , Xin Zhang . Recent Advances of the Synthesis of Indolines by Unactivated Alkenes[J]. Chinese Journal of Organic Chemistry, 2019 , 39(10) : 2705 -2712 . DOI: 10.6023/cjoc201904014

References

[1] Silva, T. S.; Rodrigues, M. T.; Santos, H.; Zeoly, L. A.; Almeida, W. P.; Barcelos, R. C.; Gomes, R. C.; Fernandes, F. S.; Coelho, F . Tetrahedron 2019,75, 2553.
[2] Collins, M. A.; Hudak, V.; Bender, R.; Fensome, A.; Zhang, P.; Miller, L . Med. Chem. Lett. 2004, 14, 2185.
[3] Tokunaga, T.; Hume, W. E.; Umezone, T.; Okazaki, K.; Ueki, Y.; Kumagai, K. J. Med. Chem. 2001, 44, 4641.
[4] (a) Wang, T.; Xu, Q.; Yu, P. Org. Lett. 2001, 3, 345.
[4] (b) Bui, T.; Syed, S.; Barbas, C F. J. Am. Chem. Soc. 2009, 131, 8758.
[4] (c) Toda, N.; Ori, M.; Takami, K.; Tago, K.; Kogen, H . Org. Lett. 2003, 5, 269.
[4] (d) Zhang, H.; Boonsombat, J.; Padwa, A. Org. Lett. 2007, 9, 279.
[4] (e) Langlois, N.; Gueritte, F.; Langlois, Y. J. Am. Chem. Soc. 1976, 98, 7017.
[4] (f) Marino, J. P.; Rubio, M. B.; Cao, G. J. Am. Chem. Soc. 2002, 124, 13398.
[5] (a) Van Order, R. B.; Lindwall, H. G. Chem. Rev. 1942, 30, 69.
[5] (b) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195.
[5] (c) Petrini, M. Chem. Eur. J. 2017, 23, 16115.,
[5] (d) Leitch, J. A.; Bhonoah, Y.; Frost, C. G. ACS Catal. 2017, 7, 5618.
[6] (a) Kirillova, M. S.; Miloserdov, F. M.; Echavarren, A. M . Org. Chem. Front . 2018,5, 273.
[6] (b) Song, J.; Chen, D.; Gong, L . Natl. Sci. Rev. 2017,4, 381.
[6] (c) Corsello, M. A.; Kim, J.; Garg, N . Chem. Sci. 2017,8, 5836.,
[6] (d) Homer, J. A.; Sperry, J . J. Nat. Prod. 2017,80, 2178.
[7] (a) Singh, A. K.; Raj, V.; Saha, S. Eur. J. Med. Chem. 2017, 142, 244.
[7] (b) Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016, 91, 1.
[7] (c) Sugimoto, S.; Naganuma, M.; Kanai, T. J. Gastroenterol. 2016, 51, 853.
[7] (d) Megna, B. W.; Carney, P. R.; Nukaya, M.; Geiger, P.; Kennedy, G. D. J. Surg. Res. 2016, 204, 47.
[8] (a) Zheng, C.; Zheng, S. Y. Chem 2016, 1, 830.
[8] (b) Liang, X.; Zheng, C. ; You, S. Chem.-Eur. J. 2016, 22, 11918.
[8] (b) Roche, S. P.; Tendoung, J. Y.; Treguier, B. Tetrahedron 2015, 71, 3549.
[8] (d) Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807.
[9] (a) Wang, L.; Li, S.; Blmel, M.; Puttreddy, R.; Peuronen, A.; Rissanen, K.; Enders, D. Angew. Chem., Int. Ed. 2017, 56, 8516.
[9] (b) Zhao, B.; Du, D.; Chem. Commun. 2016, 52, 6162.
[9] (c) Kayal, S.; Mukherjee, S. Org. Biomol. Chem. 2016, 14, 10175.
[9] (d) Du, D.; Jiang, Y.; Xu, Q.; Tang, X.; Shi, M. ChemCatChem , 2015, 7, 1366.
[10] For selected reviews on difunctionalization of alkenes, see: (a) Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
[10] (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
[10] (c) Jacques, B.; Muniz, K . In Catalyzed Carbon-Heteroatom Bond Formation, Ed.: Yudin, A. K., Wiley-VCH, Weinheim, 2010, 119.
[10] (d) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.,
[10] (e) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
[10] (f) Sun, K.; Luan, B.; Liu, Z.; Zhu, J.; Du, J.; Bai, E.; Fang, Y.; Zhang, B. Org. Bimol. Chem. 2019, 17, 4208.
[10] (g) Sun, K.; Wang, S.; Feng, R.; Zhang, Y.; Wang, X.; Zhang, Z.; Zhang, B. Org. Lett. 2019, 21, 2052.
[10] (h) Sun, K.; Shi, Z.; Liu, Z.; Luan, B.; Zhu, J.; Xue, Y. Org. Lett. 2018, 20, 6687.
[11] (a) Lan, X.; Wang, N.; Xing, Y. Eur. J. Org. Chem. 2017,5821.
[11] (b) Bag, R.; De, P. B.; Pradhan, S.; Punniyamurthy, T. Eur. J. Org. Chem. 2017, 5424.
[11] (c) Romero, R. M.; W?ste, T. H.; Mu?iz, K. Chem. Asian J. 2014, 9, 972.
[11] (d) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.
[12] (a) Smart, B. E. Chem.Rev. 1996, 96, 1555.
[12] (b) Shimizu, M Hiyama, T. Angew. Chem.,Int. Ed. 2005, 44, 214.
[12] (c) Muller, C. K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881., 10202.
[12] (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
[12] (e) Wang, F.; Wang, D.-H.; Mu, X.; Chen, P.-H.; Liu, G.-S. J. Am. Chem. Soc. 2014, 136, 10202.
[13] For recent reviews on trifluoromethylation of alkenes, see: (a) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
[13] (b) Egami, H.; Sodeoka, M. Angew. Chem. Int. Ed. 2014, 53, 8294.
[14] For selected examples see:(a) Li, L.; Gu, Q.; Wang, N.; Song, P.; Li, Z.; Li, X.; Wang, F.; Liu, X. Chem. Commun. 2017, 53, 4038.
[14] (b) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937.
[14] (c) Ye, J.; Song, L.; Zhou, W.; Ju, T.; Yin, Z.; Yan, S.; Zhang, Z.; Li, J.; Yu, D. Angew. Chem., Int. Ed. 2016, 55, 10022.
[14] (d) Liu, C.; Lu, Q.; Huang, Z.; Zhang, J.; Liao, F.; Peng, P.; Lei, A. Org. Lett. 2015, 17, 6034.
[14] (e) Yang, B.; Xu, X.; Qing, F. Org. Lett. 2015, 17, 1906.
[15] Recent examples for trifluoromethylative alkene difunctionalization of N-arylacrylamides: (a) Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2016, 55, 8740.
[15] (b) Guo, J.; Wu, R.; Jin, J.; Tian, S. Org. Lett 2016,18, 3850.
[15] (c) Liu, C.; Zhao, W.; Huang, Y.; Wang, H.; Zhang, B. Tetrahedron 2015,71, 4344.
[16] Synthesis of CF3CH2-containing oxindoles from acryl sulfonamides: (a) Zheng, L.; Yang, C.; Xu, Z.; Gao, F.; Xia, W. J. Org. Chem. 2015,80, 5730.
[16] (b) Li, L.; Deng, M.; Zheng, S.; Xiong, Y.; Tan, B.; Liu, X. Org. Lett. 2014, 16, 504.
[16] (c) Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2013,135, 14480.
[17] Bertrand, F.; Pevere, V.; Quiclet-Sire, B.; Zard, S. Z. Org. Lett. 2001, 3, 1069.
[18] Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M . Angew. Chem., Int. Ed.2013, 52, 4000.
[19] Kawamura, S.; Dosei, K.; Valverde, E.; Ushida, K.; Sodeoka, M. J. Org. Chem. 2017, 82, 12539.
[20] Dai, J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z.; Lu, X.; Liu, L.; Fu, Y . J. Am. Chem. Soc. 2013, 135, 8436.
[21] Zheng, J.; Chen, P.; Yuan, Y.; Cheng, J. J. Org. Chem. 2017, 82, 5790.
[22] Liang, D.; Dong, Q.; Xu, P.; Dong, Y.; Li, W Ma, Y. J. Org. Chem. 2018, 83, 11978.
[23] (a) Yang, B.; Xu, X Qing, F. .; Chin. J. Chem. 2016, 34, 465.
[23] (b) Huang, H.; Yan, H.; Gao, G.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674.
[23] (c) Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Chem. Commun. 2014, 50, 14101.
[24] (a) Wu, T.; Mu, X.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 12578.
[24] (b) Zhang, H.; Chen, P.; Liu, G. Synlett 2012, 23, 2749.
[25] Krys, P.; Matyjaszewski, K . Eur. Polym. J. 2017, 89, 482.
[26] Studer, A.; Curran, D. P. Angew. Chem. Int. Ed. 2016, 55, 58.
[27] Recent examples see: (a) Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017, 56, 9532.
[27] (b) Sato, M.; Azuma, H.; Daigaku, A.; Sato, S.; Takasu, K.; Okano, K.; Tokuyama, H. Angew. Chem., Int. Ed. 2017, 56, 1087.
[27] (c) Ren, S.; Zhang, F.; Qi, J.; Huang, Y.; Xu, A.; Yan, H.; Wang, Y. J. Am. Chem. Soc. 2017, 139, 6050., 2107.
[27] (d) Gharpure, S. J.; Shelke, Y. G. Org. Lett. 2017, 19, 5022.
[27] (e) Zhang, H.; Ma, S.; Xing, Z.; Liu, L.; Fang, B.; Xie, X.; She, X. Org. Chem. Front. 2017, 4, 2211.
[27] (f) Liu, X.; Luo, X.; Wu, Z.; Cui, X.; He, Y.; Huang, G. J. Org. Chem. 2017, 82, 2107.
[28] (a) Irudayanathan, F. M.; Lee, S. Org. Lett. 2017, 19, 2318.
[28] (b) Liu, B.; Wang, C.; Hu, M.; Song, R.; Chen, F.; Li, J. Chem. Commun. 2017, 53,1265.
[28] (c) Song, W.; Yan, P.; Shen, D.; Chen, Z.; Zeng, X.; Zhong, G. J. Org. Chem. 2017, 82,4444.
[28] (d) Lan, X.; Wang, N.; Bai, C.; Lan, C.; Zhang, T.; Chen, S.; Xing, Y. Org. Lett. 2016, 18,5986. 13822.
[28] (e) Deng, Y.; Tang, S.; Ding, G.; Wang, M.; Li, J.; Li, Z.; Yuan, L.; Sheng, R. Org. Biomol. Chem. 2016, 14,9348
[28] (f) Gao, B.; Xie, Y.; Yang, L.; Huang, H. Org. Biomol. Chem. 2016, 14,2399.
[28] (g) Xie, Y.; Guo, S.; Wu, L.; Xia, C.; Huang, H. Angew. Chem., Int. Ed. 2015, 54,5900.
[28] (h) Rong, G.; Mao, J.; Zheng, Y.; Yao, R.; Xu, X. Chem. Commun. 2015, 51,13822.
[29] Li, Y.; Chang, Y.; Li, Y.; Cao, C.; Yang, J.; Wang, B.; Liang, D. Adv. Synth. Catal. 2018, 360, 2488.
[30] (a) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
[30] (b) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova, S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
[30] (c) Wang, J.; Sánchez-Roselló, M.; Acena, J. L.; Pozo, C. del; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H . Chem. Rev. 2014, 114, 2432.
[30]
[30] (d) Paul, C.; Pohnert, G. Nat. Prod. Rep. 2011, 28, 186.
[30]
[30] (e) Latham, J.; Brandenburger, E.; Shepherd, S. A.; Menon, B. R. K.; Micklefield, J. Chem. Rev. 2018, 118, 232.
[31] (a) Sitachitta, N.; Rossi, J.; Roberts, M. A.; Gerwick, W. H.; Fletcher, M. D.; Willis, C. L.. J. Am. Chem. Soc. 1998, 120, 7131.
[31] (b) Owusu-Ansah, E.; Durow, A. C.; Harding, J. R.; Jordan, A. C.; O'Connell, S.J.; Willis, C. L. Org. Biomol. Chem. 2011, 9, 265.
[31] (c) Yu, H.-Y.; Bao, L.-J.; Liang, Y.; Zeng, E. Y. Environ. Sci. Technol. 2011, 45, 5245
[31] (d) Wagner, C.; Omari, M. E.; K?nig, G. M. J. Nat. Prod. 2009, 72, 540.
[31] (e) Arda?, A.; Soengas, R. G.; Nieto, M. I.; Jime?nez, C.; Rodríguez, J. Org. Lett. 2008, 10, 2175.
[31] (f) Orjala, J. O.; Gerwick, W. H. J. Nat. Prod. 1996, 59, 427.
[31] (g) Nguyen, V.-A.; Willis, C. L.; Gerwick, W. H. Chem. Commun. 2001, 1934.
[31] (h) Durow, A. C.; Long, G. C.; O'Connell, S. J.; Willis, C. L. Org. Lett. 2006, 8, 5401.
[32] Pan, C.; Gao, D.; Yang, Z.; Wu, C Yu, J. .; Org. Biomol. Chem. 2018, 16, 5752.
[33] Simmons, E. M.; Hartwig, J. Angew. Chem., Int. Ed. 2012, 51, 3066.
[34] (a) Chan, C.-W.; Zhou, Z.; Chan, A. S. C.; Yu, W.-Y. . Org. Lett 2010, 12, 3296.
[34] (b) Jia, X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120.
[34] (c) Tang, B.-X.; Song, R.-J.; Li, J.-H. J. Am. Chem. Soc. 2010, 132, 8900.
[34] (d) Wu, Y.; Li, B.; Mao, F.; Li, X.; Kwong, F. Y. Org. Lett. 2011, 13, 3258.
[35] Pan,C.; Yang, Z.; Gao, D.; Yu, J. Org. Biomol. Chem. 2018, 16, 6035.
[36] (a) Tercel, M.; Lee, H. H.; Mehta, S. Y.; Youte Tendoung, J.-J.; Bai, S. Y.; Liyanage, H. D. S.; Pruijn, F. B. J. Med. Chem. 2017, 60, 5834.
[36] (b) Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. J. Med. Chem. 2016, 59, 5264.
[36] (c) Palmerini, C. A.; Tartacca, F.; Mazzoni, M.; Granieri, L.; Goracci, L.; Scrascia, A.; Lepri, S. Eur. J. Med. Chem. 2015, 102, 403.
[36] (d) Na, Z.; Pan, S.; Uttamchandani, M.; Yao, S. Q. Angew. Chem., Int. Ed . 2014, 53, 8421.
[36] (e) Kandekar, S.; Preet, R.; Kashyap, M.; Mu, R. P.; Mohapatra, P.; Das, D.; Satapathy, S. R.; Siddharth, S.; Jain, V.; Choudhuri, M.; Kundu, C. N.; Guchhait, S. K.; Bharatam, P. V. ChemMedChem. 2013, 8, 1873.
[36] (f) Zhao, R. Y.; Erickson, H. K.; Leece, B. A.; Reid, E. E.; Goldmacher, V. S.; Lambert, J. M.; Chari, R. V. J. J. Med. Chem. 2012, 55, 766.
[37] (a) Chansaenpak, K.; Wang, M.; Liu, S.; Wu, Z.; Yuan, H.; Conti, P. S.; Li, Z.; Gabba?, F. P. RSC Adv. 2016, 6, 23126.
[37] (b) Cai, Z.; Ouyang, Q.; Zeng, D.; Nguyen, K. N.; Modi, J.; Wang, L.; White, A. G.; Rogers, B. E.; Xie, X.; Anderson, C. J. J. Med. Chem. 2014, 57, 6019.
[38] (a) Dousson, C.; Alexandre, F.; Amador, A.; Bonaric, S.; Bot, S.; Caillet, C.; Convard, T.; da Costa, D.; Lioure, M.; Roland, A.; Rosinovsky, E.; Maldonado, S.; Parsy, C.; Trochet, C.; Storer, R.; Stewart, A.; Wang, J.; Mayes, B. A.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Moussa, A.; Jakubik, J.; Hubbard, L.; Seifer, M.; Standring, D. J. Med. Chem. 2016, 59, 1891.
[38] (b) Alexandre, F.; Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Roland, A.; Seifer, M.; Standring, D.; Storer, R.; Dousson, C. B. J. Med. Chem. 2011, 54, 392.
[39] Okon, A.; Matos de Souza, M. R.; Shah, R.; Amorim, R.; da Costa, L. J.; Wagner, C. R. ACS Med. Chem. Lett. 2017, 8, 958.
[40] Li, M.; Nyantakyi, S. A.; Gopal, P.; Aziz, D. B.; Dick, T.; Go, M . ACS Med. Chem. Lett. 2017, 8, 1165. .
[41] (a) Fricke, J.; Blei, F.; Hoffmeister, D. Angew. Chem., Int. Ed. 2017, 56, 12352.
[41] (b) Hofmann, A.; Heim, R.; Brack, A.; Kobel, H.; Frey, A.; Ott, H.; Petrzilka, T.; Troxler, F. Helv. Chim. Acta 1959, 42, 1557.
[42] Wu, S.; Cao, Q.; Wang, X.; Cheng, K.; Cheng, Z. Chem. Commun. 2014, 50, 8919.
[43] Vaillard, S. E.; Postigo, A.; Rossi, R. A. J. Org. Chem. 2002, 67, 8500.
[44] Gagosz, F.; Zard, S. Z . Synlett 2003, 387.
[45] Bruch, A.; Ambrosius, A.; Fro?hlich, R.; Studer, A.; Guthrie, D. B.; Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2010 , 132, 11452.
[46] Bruch, A.; Fro?hlich, R.; Grimme, S.; Studer, A.; Curran, D. P. J. Am. Chem. Soc. 2011 , 133, 16270.
[47] Liang, D.; Ge, D.; Lü, Y.; Huang, W.; Wang, B.; Li, W. J. Org. Chem. 2018, 83, 4681.
[48] (a) Xu, J.; Yu, X.; Song, Q. Org. Lett. 2017, 19, 980.
[48] (b) Li, Y.; Sun, M.; Wang, H.; Tian, Q.; Yang, S. Angew. Chem., Int. Ed. 2013, 52, 3972.
[48] (c) Zheng, J.; Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2016, 18, 1768.
Outlines

/