Iron/O2-Promoted C-H Bond Functionalization for the Exclusive Synthesis of 2-Quinoline Carboxaldehydes under Microwave Irradiation

  • Tinghui Xie ,
  • Xiaoying Jiang ,
  • Zhisheng Mi ,
  • Xue Li ,
  • Xiaohe Xu ,
  • Renren Bai ,
  • Qi Shuai ,
  • Yuanyuan Xie
Expand
  • a Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014
    b College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, Zhejiang 318020

Received date: 2019-03-04

  Online published: 2019-07-09

Supported by

the National Natural Science Foundation of China(21576239)

Abstract

An one-pot iron-catalyzed oxidative formylation of 2-methylquinolines to produce 2-quinoline carboxaldehydes under microwave irradiation has been achieved by employing O2 as the oxygen donor. The reaction was general for the substrates with a wide range of functional groups, providing a yield of 48%~80%. The preliminary mechanistic studies revealed that the reaction underwent a radical pathway. Advantages of this method include the easy operation, short reaction time and good selectivity.

Cite this article

Tinghui Xie , Xiaoying Jiang , Zhisheng Mi , Xue Li , Xiaohe Xu , Renren Bai , Qi Shuai , Yuanyuan Xie . Iron/O2-Promoted C-H Bond Functionalization for the Exclusive Synthesis of 2-Quinoline Carboxaldehydes under Microwave Irradiation[J]. Chinese Journal of Organic Chemistry, 2019 , 39(11) : 3294 -3298 . DOI: 10.6023/cjoc201903007

References

[1] (a) Li, Z.; Wu, S.-S.; Luo, Z.-G.; Liu, W.-K.; Feng, C.-T.; Ma, S.-T. J. Org. Chem. 2016, 81, 4386.
[1] (b) Xu, L.-B.; Shao, Z.-Z.; Wang, L.; Zhao, H.-L.; Xiao, J. Tetrahedron Lett. 2014, 55, 6856.
[1] (c) Thirunavukkarasu, V. S.; Kozhushkov S. I.; Ackermann, L. Chem. Commun. 2014, 50, 29.
[2] (a) Derong, D.; Linda, P. D.; Peter, A. C. Tetrahedron Lett. 2013. 54, 5211.
[2] (b) Jiang, L.; Huang, Y.-Y.; Yan, Y.-Y.; Xie, Y.-Y. Tetrahedron Lett. 2016, 57, 4149.
[3] Guo S.-J. Wan G. Sun S. Jiang Y. Yu J.-T. Cheng J. Chem. Commun. 2015 51 5085.
[4] Xie Y.-Y. Li L.-H. Tetrahedron Lett. 2014 55 3892.
[5] (a) Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q. P.; Padhye, S.; Sarkar, F. H. J. Med. Chem. 2006, 49, 7242.
[5] (b) Teguh, S. C.; Klonis, N.; Duffy, S.; Lucantoni, L.; Avery, V. M.; Hutton, C. A.; Baell, J. B.; Tilley, L. J. Med. Chem. 2013, 56, 6200.
[6] (a) Pokhrel, L.; Kim, Y.; Nguyen, T. D. T.; Prior, A. M.; Lu, J. Y.; Chang, K. O.; Hua, D. H. Bioorg. Med. Chem. Lett. 2012, 22, 3480.
[6] (b) Dai, Q.; Yu, J.-T.; Feng, X.-M.; Jiang, Y.; Yang, H.-T.; Cheng, J. Adv. Synth. Catal. 2014, 356, 3341.
[6] (c) Gopinath, V. S.; Pinjari, J.; Dere, R. T.; Verma, A.; Vishwakarma, P.; Shivahare, R.; Moger, M.; Goud, P. S. K.; Ramanathan, V.; Bose, P.; Rao, M. V. S.; Gupta, S.; Puri, S. K.; Launay, D.; Martin, D. Eur. J. Med. Chem. 2013, 69, 527.
[7] Holzapfel C. W. Ferreira A. C. Marais W. J. Chem. Res., Synop. 2002 5 218.
[8] Ding D. Dwoskin L. P. Crooks P. A. Tetrahedron Lett. 2013 54 5211.
[9] Minisci F. Vismara E. Levi S. J. Org. Chem. 1986 51 536.
[10] Zheng G. Liu H. Wang M. Chin. J. Chem. 2016 34 519.
[11] (a) Sindhu, K. S.; Abi, T. G.; Mathai, G.; Anilkumar, G. Polyhedron 2019, 158, 270.
[11] (b) Wusiman, A.; Hudabaierdi, R. Tetrahedron Lett. 2019, 60, 681.
[11] (c) Wang, X.-Z.; Zeng, C.-C. Tetrahedron 2019, 75, 1425.
[11] (d) Ding, X.-Y.; Xu, F. Chin. J. Org. Chem. 2018, 38, 3345 (in Chinese).
[11] (丁晓友, 徐凡, 有机化学, 2018, 38, 3345.)
[12] (a) Ma, S.-M.; Liu, J.-X.; Li, S.-H.; Chen, B.; Cheng, J.-J.; Kuang, J.-Q.; Liu, Y.; Wan, B.-Q.; Wang, Y.-L.; Ye, J.-T.; Yu, Q.; Yuan, W. M.; Yu, S.-C. Adv. Synth. Catal. 2011, 353, 1005.
[12] (b) Silva, M. J.; Carari, D. M. Catal. Lett. 2014, 144, 615.
[12] (c) Tanaka, S.; Kon, Y.; Uesaka, Y.; Morioka, R.; Tamura, M.; Sato, K. Chem. Lett. 2016, 45, 188.
[12] (d) Xu, X.-H.; Sun, J.; Cheng, J.-Y.; Li, P.-P.; Jiang, X.-Y.; Bai, R.-R.; Xie, Y.-Y. Eur. J. Org. Chem. 2017, 47, 7160.
[12] (e) Amaya, T.; Fujimoto, H. Tetrahedron Lett. 2018, 59, 2657.
[12] (f) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem. Int. Ed. 2008, 47, 8897.
[12] (g) Namboodiri, V. V.; Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2007, 48, 8839.
[13] (a) Jiang, K.; Pi, D.-W.; Zhou, H.-F.; Liu, S.-S.; Zou, K. Tetrahedron. 2014, 70, 3056.
[13] (b) Rao, N. N.; Meshram, H. M.; Tetrahedron Lett. 2013, 54, 1315.
[13] (c) Li, Q.; Huang, Y.; Chen, T.-Q.; Zhou, Y.-B.; Xu, Q.; Yin, S.-F.; Han, L.-B. Org. Lett. 2014, 16, 3672.
[14] Yasunari M. Kanoko Y. Takashi T. Takayuki A. Tomohiro M. Kosaku H. Hironao S. Heterocycles 2010 80 737.
[15] Mathes W. Sauermilch W. Chem. Ber. 1957 90 758.
[16] Chen X.-Y. Shi J. Li Y.-M. Wang F.-L. Wu X. Guo Q.-X. Liu L. Org. Lett. 2009 11 4421.
[17] Brown B. R. Hammick D. L. J. Chem. Soc. 1950 628.
[18] Buehler C. A. Edwards S. P. J. Am. Chem. Soc. 1952 74 4 977.
[19] Ballesteros G. R. Leroux F. R. Ballesteros R. Tetrahedron 2009 65 22 4410.
[20] Janina, B. PL 56421, 1968[Chem. Abstr. 1968, 70, 115023].
[21] Wang L. Hou X.-B. Fu H.-S. Pan X.-L. Xu W.-F. Tang W.-P Fang H. Bioorg. Med. Chem. 2015 15 23 4364.
[22] Leese C. L. Rydon H. N. J. Chem. Soc. 1956 303.
Outlines

/