Chinese Journal of Organic Chemistry >
Application of Photosensitizer 2, 4, 5, 6-Tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene in Photo-induced Transition-Metal-Free Organic Synthesis
Received date: 2019-04-09
Online published: 2019-07-24
Supported by
the Basic and Frontier Research Project of Chongqing City(Cstc2018jcyjAX0051)
Visible-light-promoted organic synthesis is an important research hotspot and frontier in organic chemistry in recent years. Particularly, as a novel organic photosensitizer, 2, 4, 5, 6-tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene (4CzIPN) has showed excellent catalytic performance in visible-light-induced radical reactions. The recent progress on the transition-metal-free photosynthesis under visible-light catalyzed by 4CzIPN is reviewed, and the application of 4CzIPN for photocatalytic organic transformations from different precursors (including silicon reagent, carboxylic acid and its derivatives, sulfur-containing reagent and fluorine reagent) is included.
Jinyang Chen , Yuhan Li , Lan Mei , Hongyu Wu . Application of Photosensitizer 2, 4, 5, 6-Tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene in Photo-induced Transition-Metal-Free Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2019 , 39(11) : 3040 -3050 . DOI: 10.6023/cjoc201904022
[1] | (a) Ruan, L.; Chen, C.; Zhang, X.; Sun, J. Chin. J. Org. Chem. 2018, 38, 3155 (in Chinese). |
[1] | (阮利衡, 陈春欣, 张晓欣, 孙京, 有机化学, 2018, 38, 3155.) |
[1] | (b) Li, R.; Chen, X.; Wei, S.; Sun, K.; Fan, L.; Liu, Y.; Qu, L.; Zhao, Y.; Yu, B. Adv. Synth. Catal. 2018, 360, 4807. |
[2] | Fukuzumi S.; Ohkubo K. Org. Biomol. Chem. 2014, 12, 6059. |
[3] | Ravelli D.; Fagnoni M.; Albini A. Chem. Soc. Rev. 2013, 42, 97. |
[4] | (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355. |
[4] | (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. |
[5] | Margrey K. A.; Nicewicz D. A. Acc. Chem. Res. 2016, 49, 1997. |
[6] | Hari D. P.; K?nig B. Chem. Commun. 2014, 50, 6688. |
[7] | Srivastava V.; Singh P. P. RSC Adv. 2017, 7, 31377. |
[8] | Peng J.-B.; Qi X.; Wu X.-F. ChemSusChem 2016, 9, 2279. |
[9] | Xu W.; Dai X.; Xu H.; Weng J. Chin. J. Org. Chem. 2018, 38, 2807. |
[9] | 徐雯秀; 戴小强; 徐涵靖; 翁建全 . 有机化学 2018, 38, 2807. |
[10] | (a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. |
[10] | (b) Yokoyama, M.; Inada, K.; Tsuchiya, Y.; Nakanotani, H.; Adachi, C. Chem. Commun. 2018, 54, 8261. |
[11] | Lu J.; Pattengale B.; Liu Q.; Yang S.; Shi W.; Li S.; Huang J.; Zhang J. J. Am. Chem. Soc. 2018, 140, 13719. |
[12] | Luo J.; Zhang J. ACS Catal. 2016, 6, 873. |
[13] | Shang T.-Y.; Lu L.-H.; Cao Z.; Liu Y.; He W.-M.; Yu B. Chem. Commun. 2019, 55, 5408. |
[14] | Speckmeier E.; Fischer T. G.; Zeitler K. J. Am. Chem. Soc. 2018, 140, 15353. |
[15] | Lang S. B.; Wiles R. J.; Kelly C. B.; Molander G. A. Angew. Chem., Int. Ed. 2017, 56, 15073. |
[16] | Sun K.; Li S.-J.; Chen X.; Liu Y.; Huang X.; Wei D.; Qu L.; Zhao Y.; Yu B. Chem. Commun. 2019, 55, 2861. |
[17] | Phelan J. P.; Lang S. B.; Compton J. S.; Kelly C. B.; Dykstra R.; Gutierrez O.; Molander G. A. J. Am. Chem. Soc. 2018, 140, 8037. |
[18] | Milligan J. A.; Phelan J. P.; Polites V. C.; Kelly C. B.; Molander G. A. Org. Lett. 2018, 20, 6840. |
[19] | Qrareya H.; Dondi D.; Ravelli D.; Fagnoni M. ChemCatChem 2015, 7, 3350. |
[20] | Zhou R.; Goh Y. Y.; Liu H. W.; Tao H. R.; Li L. H.; Wu J. Angew. Chem., Int. Ed. 2017, 56, 16621. |
[21] | (a) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304. |
[21] | (b) Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79. |
[22] | (a) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435. |
[22] | (b) Yu, B.; Zou, B.; Hu, C.-W. J. CO2 Util. 2018, 26, 314. |
[23] | Patel N. R.; Kelly C. B.; Siegenfeld A. P.; Molander G. A. ACS Catal. 2017, 7, 1766. |
[24] | Cartier A.; Levernier E.; Corcé V.; Fukuyama T.; Dhimane A.-L.; Ollivier C.; Ryu I.; Fensterbank L. Angew. Chem., Int. Ed. 2019, 58, 1789. |
[25] | (a) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864. |
[25] | (b) Zheng, Q.-Z.; Jiao, N. Chem. Soc. Rev. 2016, 45, 4590. |
[25] | (c) Hu, H.; Chen, X.; Sun, K.; Wang, J.; Liu, Y.; Liu, H.; Yu, B.; Sun, Y.; Qu, L.; Zhao, Y. Org. Chem. Front. 2018, 5, 2925. |
[25] | (d) Zhao, W.-M.; Chen, X.-L.; Yuan, J.-W.; Qu, L.-B.; Duan, L.-K.; Zhao, Y.-F. Chem. Commun. 2014, 50, 2018. |
[26] | Huang H.; Li X.; Yu C.; Zhang Y.; Mariano P. S.; Wang W. Angew. Chem., Int. Ed. 2017, 56, 1500. |
[27] | Huang H.; Yu C.; Zhang Y.; Zhang Y.; Mariano P. S.; Wang W. J. Am. Chem. Soc. 2017, 139, 9799. |
[28] | Guo J.; Wu Q.-L.; Xie Y.; Weng J.; Lu G. J. Org. Chem. 2018, 83, 12559. |
[29] | Sherwood T. C.; Li N.; Yazdani A. N.; Dhar T. G. M. J. Org. Chem. 2018, 83, 3000. |
[30] | Pawar G. G.; Robert F.; Grau E.; Cramail H.; Landais Y. Chem. Commun. 2018, 54, 9337. |
[31] | Jiang H.; Studer A. Chem.-Eur. J. 2019, 25, 516. |
[32] | Sherwood T. C.; Xiao H.-Y.; Bhaskar R. G.; Simmons E. M.; Zaretsky S.; Rauch M. P.; Knowles R. R.; Dhar T. G. M. J. Org. Chem. 2019 |
[33] | Shu C.; Mega R. S.; Andreassen B. J.; Noble A.; Aggarwal V. K. Angew. Chem., Int. Ed. 2018, 57, 15430. |
[34] | Xu W.; Ma J.; Yuan X.-A.; Dai J.; Xie J.; Zhu C. Angew. Chem., Int. Ed. 2018, 57, 10357. |
[35] | (a) Wang, J.; Sun, K.; Chen, X.; Chen, T.; Liu, Y.; Qu, L.; Zhao, Y.; Yu, B. Org. Lett. 2019, 21, 1863. |
[35] | (b) Liu, F.; Wang, J.-Y.; Zhou, P.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Angew. Chem., Int. Ed. 2017, 56, 15570. |
[35] | (c) Huang, M.-H.; Hao, W.-J.; Jiang, B. Chem.-Asian J. 2018, 13, 2958. |
[36] | Cai S.; Tian Y.; Zhang J.; Liu Z.; Lu M.; Weng W.; Huang M. Adv. Synth. Catal. 2018, 360, 4084. |
[37] | (a) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962. |
[37] | (b) Huang, H.-L.; Yan, H.; Gao, G.-L.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674. |
[37] | (c) Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222. |
[37] | (d) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346. |
[38] | Lu M.; Qin H.; Lin Z.; Huang M.; Weng W.; Cai S. Org. Lett. 2018, 20, 7611. |
[39] | Lu M.; Liu Z.; Zhang J.; Tian Y.; Qin H.; Huang M.; Hu S.; Cai S. Org. Biomol. Chem. 2018, 16, 6564. |
[40] | (a) Abdukader, A.; Zhang, Y.; Zhang, Z.; Liu, C. Chin. J. Org. Chem. 2016, 36, 875. |
[40] | (b) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604. |
[40] | (c) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195. |
[41] | Li J.-X.; Li L.; Zhou M.-D.; Wang H. Org. Chem. Front. 2018, 5, 1003. |
[42] | Zhang Q.-B.; Yuan P.-F.; Kai L.-L.; Liu K.; Ban Y.-L.; Wang X.-Y.; Wu L.-Z.; Liu Q. Org. Lett. 2019, 21, 885. |
[43] | Martinez-Haya R.; Marzo L.; K?nig B. Chem. Commun. 2018, 54, 11602. |
[44] | Düsel S. J. S.; K?nig B. Eur. J. Org. Chem. 2019 |
[45] | Shu C.; Noble A.; Aggarwal V. K. Angew. Chem., Int. Ed. 2019, 58, 3870. |
[46] | Morcillo S. P.; Dauncey E. M.; Kim J. H.; Douglas J. J.; Sheikh N. S.; Leonori D. Angew. Chem., Int. Ed. 2018, 57, 12945. |
[47] | (a) Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. Angew. Chem., Int. Ed. 2011, 50, 1393. |
[47] | (b) Sathe, A. A.; Hartline, D. R.; Radosevich, A. T. Chem. Commun. 2013, 49, 5040. |
[47] | (c) Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028. |
[47] | (d) Guo, C.-X.; Zhang, W.-Z.; Zhou, H.; Zhang, N.; Lu, X.-B. Chem.-Eur. J. 2016, 22, 17156. |
[48] | Ju T.; Fu Q.; Ye J.-H.; Zhang Z.; Liao L.-L.; Yan S.-S.; Tian X.-Y.; Luo S.-P.; Li J.; Yu D.-G. Angew. Chem., Int. Ed. 2018, 57, 13897. |
/
〈 |
|
〉 |