Application of Photosensitizer 2, 4, 5, 6-Tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene in Photo-induced Transition-Metal-Free Organic Synthesis

  • Jinyang Chen ,
  • Yuhan Li ,
  • Lan Mei ,
  • Hongyu Wu
Expand
  • College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408000

Received date: 2019-04-09

  Online published: 2019-07-24

Supported by

the Basic and Frontier Research Project of Chongqing City(Cstc2018jcyjAX0051)

Abstract

Visible-light-promoted organic synthesis is an important research hotspot and frontier in organic chemistry in recent years. Particularly, as a novel organic photosensitizer, 2, 4, 5, 6-tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene (4CzIPN) has showed excellent catalytic performance in visible-light-induced radical reactions. The recent progress on the transition-metal-free photosynthesis under visible-light catalyzed by 4CzIPN is reviewed, and the application of 4CzIPN for photocatalytic organic transformations from different precursors (including silicon reagent, carboxylic acid and its derivatives, sulfur-containing reagent and fluorine reagent) is included.

Cite this article

Jinyang Chen , Yuhan Li , Lan Mei , Hongyu Wu . Application of Photosensitizer 2, 4, 5, 6-Tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene in Photo-induced Transition-Metal-Free Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2019 , 39(11) : 3040 -3050 . DOI: 10.6023/cjoc201904022

References

[1] (a) Ruan, L.; Chen, C.; Zhang, X.; Sun, J. Chin. J. Org. Chem. 2018, 38, 3155 (in Chinese).
[1] (阮利衡, 陈春欣, 张晓欣, 孙京, 有机化学, 2018, 38, 3155.)
[1] (b) Li, R.; Chen, X.; Wei, S.; Sun, K.; Fan, L.; Liu, Y.; Qu, L.; Zhao, Y.; Yu, B. Adv. Synth. Catal. 2018, 360, 4807.
[2] Fukuzumi S.; Ohkubo K. Org. Biomol. Chem. 2014, 12, 6059.
[3] Ravelli D.; Fagnoni M.; Albini A. Chem. Soc. Rev. 2013, 42, 97.
[4] (a) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
[4] (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[5] Margrey K. A.; Nicewicz D. A. Acc. Chem. Res. 2016, 49, 1997.
[6] Hari D. P.; K?nig B. Chem. Commun. 2014, 50, 6688.
[7] Srivastava V.; Singh P. P. RSC Adv. 2017, 7, 31377.
[8] Peng J.-B.; Qi X.; Wu X.-F. ChemSusChem 2016, 9, 2279.
[9] Xu W.; Dai X.; Xu H.; Weng J. Chin. J. Org. Chem. 2018, 38, 2807.
[9] 徐雯秀; 戴小强; 徐涵靖; 翁建全 . 有机化学 2018, 38, 2807.
[10] (a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[10] (b) Yokoyama, M.; Inada, K.; Tsuchiya, Y.; Nakanotani, H.; Adachi, C. Chem. Commun. 2018, 54, 8261.
[11] Lu J.; Pattengale B.; Liu Q.; Yang S.; Shi W.; Li S.; Huang J.; Zhang J. J. Am. Chem. Soc. 2018, 140, 13719.
[12] Luo J.; Zhang J. ACS Catal. 2016, 6, 873.
[13] Shang T.-Y.; Lu L.-H.; Cao Z.; Liu Y.; He W.-M.; Yu B. Chem. Commun. 2019, 55, 5408.
[14] Speckmeier E.; Fischer T. G.; Zeitler K. J. Am. Chem. Soc. 2018, 140, 15353.
[15] Lang S. B.; Wiles R. J.; Kelly C. B.; Molander G. A. Angew. Chem., Int. Ed. 2017, 56, 15073.
[16] Sun K.; Li S.-J.; Chen X.; Liu Y.; Huang X.; Wei D.; Qu L.; Zhao Y.; Yu B. Chem. Commun. 2019, 55, 2861.
[17] Phelan J. P.; Lang S. B.; Compton J. S.; Kelly C. B.; Dykstra R.; Gutierrez O.; Molander G. A. J. Am. Chem. Soc. 2018, 140, 8037.
[18] Milligan J. A.; Phelan J. P.; Polites V. C.; Kelly C. B.; Molander G. A. Org. Lett. 2018, 20, 6840.
[19] Qrareya H.; Dondi D.; Ravelli D.; Fagnoni M. ChemCatChem 2015, 7, 3350.
[20] Zhou R.; Goh Y. Y.; Liu H. W.; Tao H. R.; Li L. H.; Wu J. Angew. Chem., Int. Ed. 2017, 56, 16621.
[21] (a) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, 352, 1304.
[21] (b) Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.
[22] (a) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
[22] (b) Yu, B.; Zou, B.; Hu, C.-W. J. CO2 Util. 2018, 26, 314.
[23] Patel N. R.; Kelly C. B.; Siegenfeld A. P.; Molander G. A. ACS Catal. 2017, 7, 1766.
[24] Cartier A.; Levernier E.; Corcé V.; Fukuyama T.; Dhimane A.-L.; Ollivier C.; Ryu I.; Fensterbank L. Angew. Chem., Int. Ed. 2019, 58, 1789.
[25] (a) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017, 117, 8864.
[25] (b) Zheng, Q.-Z.; Jiao, N. Chem. Soc. Rev. 2016, 45, 4590.
[25] (c) Hu, H.; Chen, X.; Sun, K.; Wang, J.; Liu, Y.; Liu, H.; Yu, B.; Sun, Y.; Qu, L.; Zhao, Y. Org. Chem. Front. 2018, 5, 2925.
[25] (d) Zhao, W.-M.; Chen, X.-L.; Yuan, J.-W.; Qu, L.-B.; Duan, L.-K.; Zhao, Y.-F. Chem. Commun. 2014, 50, 2018.
[26] Huang H.; Li X.; Yu C.; Zhang Y.; Mariano P. S.; Wang W. Angew. Chem., Int. Ed. 2017, 56, 1500.
[27] Huang H.; Yu C.; Zhang Y.; Zhang Y.; Mariano P. S.; Wang W. J. Am. Chem. Soc. 2017, 139, 9799.
[28] Guo J.; Wu Q.-L.; Xie Y.; Weng J.; Lu G. J. Org. Chem. 2018, 83, 12559.
[29] Sherwood T. C.; Li N.; Yazdani A. N.; Dhar T. G. M. J. Org. Chem. 2018, 83, 3000.
[30] Pawar G. G.; Robert F.; Grau E.; Cramail H.; Landais Y. Chem. Commun. 2018, 54, 9337.
[31] Jiang H.; Studer A. Chem.-Eur. J. 2019, 25, 516.
[32] Sherwood T. C.; Xiao H.-Y.; Bhaskar R. G.; Simmons E. M.; Zaretsky S.; Rauch M. P.; Knowles R. R.; Dhar T. G. M. J. Org. Chem. 2019
[33] Shu C.; Mega R. S.; Andreassen B. J.; Noble A.; Aggarwal V. K. Angew. Chem., Int. Ed. 2018, 57, 15430.
[34] Xu W.; Ma J.; Yuan X.-A.; Dai J.; Xie J.; Zhu C. Angew. Chem., Int. Ed. 2018, 57, 10357.
[35] (a) Wang, J.; Sun, K.; Chen, X.; Chen, T.; Liu, Y.; Qu, L.; Zhao, Y.; Yu, B. Org. Lett. 2019, 21, 1863.
[35] (b) Liu, F.; Wang, J.-Y.; Zhou, P.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Angew. Chem., Int. Ed. 2017, 56, 15570.
[35] (c) Huang, M.-H.; Hao, W.-J.; Jiang, B. Chem.-Asian J. 2018, 13, 2958.
[36] Cai S.; Tian Y.; Zhang J.; Liu Z.; Lu M.; Weng W.; Huang M. Adv. Synth. Catal. 2018, 360, 4084.
[37] (a) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.
[37] (b) Huang, H.-L.; Yan, H.; Gao, G.-L.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674.
[37] (c) Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222.
[37] (d) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.
[38] Lu M.; Qin H.; Lin Z.; Huang M.; Weng W.; Cai S. Org. Lett. 2018, 20, 7611.
[39] Lu M.; Liu Z.; Zhang J.; Tian Y.; Qin H.; Huang M.; Hu S.; Cai S. Org. Biomol. Chem. 2018, 16, 6564.
[40] (a) Abdukader, A.; Zhang, Y.; Zhang, Z.; Liu, C. Chin. J. Org. Chem. 2016, 36, 875.
[40] (b) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
[40] (c) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195.
[41] Li J.-X.; Li L.; Zhou M.-D.; Wang H. Org. Chem. Front. 2018, 5, 1003.
[42] Zhang Q.-B.; Yuan P.-F.; Kai L.-L.; Liu K.; Ban Y.-L.; Wang X.-Y.; Wu L.-Z.; Liu Q. Org. Lett. 2019, 21, 885.
[43] Martinez-Haya R.; Marzo L.; K?nig B. Chem. Commun. 2018, 54, 11602.
[44] Düsel S. J. S.; K?nig B. Eur. J. Org. Chem. 2019
[45] Shu C.; Noble A.; Aggarwal V. K. Angew. Chem., Int. Ed. 2019, 58, 3870.
[46] Morcillo S. P.; Dauncey E. M.; Kim J. H.; Douglas J. J.; Sheikh N. S.; Leonori D. Angew. Chem., Int. Ed. 2018, 57, 12945.
[47] (a) Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. Angew. Chem., Int. Ed. 2011, 50, 1393.
[47] (b) Sathe, A. A.; Hartline, D. R.; Radosevich, A. T. Chem. Commun. 2013, 49, 5040.
[47] (c) Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028.
[47] (d) Guo, C.-X.; Zhang, W.-Z.; Zhou, H.; Zhang, N.; Lu, X.-B. Chem.-Eur. J. 2016, 22, 17156.
[48] Ju T.; Fu Q.; Ye J.-H.; Zhang Z.; Liao L.-L.; Yan S.-S.; Tian X.-Y.; Luo S.-P.; Li J.; Yu D.-G. Angew. Chem., Int. Ed. 2018, 57, 13897.
Outlines

/