Recent Progress on Direct Difluoromethylthiolation and Monofluoromethylthiolation

  • Yan Qiang ,
  • Jiang Lüqi ,
  • Yi Wenbin
Expand
  • Chemical Engineering College, Nanjing University of Science and Technology, Nanjing 210094

Received date: 2019-07-20

  Revised date: 2019-08-29

  Online published: 2019-09-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 21476116), the Fundamental Research Funds for the Central Universities (No. 30918011314), the Natural Science Foundation of Jiangsu Province (No. BK20141394) and the Qing Lan and Six Talent Peaks in Jiangsu Province.

Abstract

Compounds bearing difluoromethylthio (SCF2H) and monofluoromethylthio (SCFH2) groups are potentially important targets in the pharmaceutical and agrochemical fields due to their unique physical and chemical properties. The traditional methods of synthesizing these two kinds of compounds are difluoromethylation and monofluoromethylation of sulfhydryl substrates. However, the limitation of sulfhydryl substrates also limited the application and development of such compounds. Thus, it is still highly desirable to develop new methods for difluoromethylthiolation and monofluoromethylthiolation as well as new types of difluoromethylthiolation and monofluoromethylthiolation reagents. The recent development of direct difluoromethylthiolation and monofluoromethylthiolation reactions is summarized, and the related mechanism are also discussed.

Cite this article

Yan Qiang , Jiang Lüqi , Yi Wenbin . Recent Progress on Direct Difluoromethylthiolation and Monofluoromethylthiolation[J]. Chinese Journal of Organic Chemistry, 2020 , 40(1) : 1 -14 . DOI: 10.6023/cjoc201907028

References

[1] Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626
[2] Bayarmagnai, B.; Matheis, C.; Jouvin, K.; Goossen, L. J. Angew. Chem., Int. Ed. 2015, 54, 5753
[3] Fourie, J. J.; Horak, I. G.; Redondo, P. V. Vet. Rec. 2010, 167, 442
[4] Morita, K.; Ide, K.; Hayase, Y.; Takahashi, T.; Hayashi, Y. Agric. Biol. Chem. 1987, 51, 1339.
[5] Yagupolskii, L. M.; Maletina, I. I.; Petko, K. I.; Fedyuk, D. V.; Handrock, R.; Shavaran, S. S.; Klebanov, B. M.; Herzig, S. J. Fluorine Chem. 2001, 109, 87.
[6] Shimizu, K. Jpn. J. Antibiot. 1988, 12, 1809
[7] Kettner, M.; Krčmery, V.; Bonini, P.; Cichero, P.; Ossi, C.; Grazioli, V. Infection 1991, 19, 253
[8] Burkholder, C. R.; Dolbier, W. R.; Medebielle, M. J. Fluorine Chem. 2000, 102, 369
[9] Boiko, V. N. Beilstein J. Org. Chem. 2010, 6, 880
[10] Ashton, M. J.; Lawrence, C.; Karlsson, J. A.; Stuttle, K. A. J.; Newton, C. G.; Vacher, B. Y. J.; Webber, S.; Withnall, M. J. J. Med. Chem. 1996, 39, 4888.
[11] Howland, W. C. Clin. Exp. Allergy 1996, 26, 18.
[12] Jung, M.; Wahl, A. F.; Neupert, W.; Geisslinger, G.; Senter, P. D. Pharm. Pharmacol. Commun. 2000, 6, 217.
[13] Hine, J.; Porter, J. J. J. Am. Chem. Soc. 1957, 79, 5493.
[14] Prakash, G. K. S.; Ni, C. F.; Wang, F.; Hu, J. B.; Olah, G. A. Angew. Chem., Int. Ed. 2011, 50, 2559.
[15] Zhao, Y. C.; Huang, W. Z.; Zhu, L. G.; Hu, J. B. Org. Lett. 2010, 12, 1444.
[16] Kudo, N.; Yondea, A.; Sato, K.; Honma, T.; Sugai, S. Chem. Pharm. Bull. 2000, 48, 509.
[17] Wang, W. Q.; Yu, Q. W.; Zhang, Q.; Li, J. W.; Hui, F.; Yang, J. M.; Lü, J. Chin. J. Org. Chem. 2018, 38, 1569(in Chinese). (王为强, 余秦伟, 张前, 李江伟, 惠丰, 杨建明, 吕剑, 有机化学, 2018, 38, 1569.)
[18] Fuchibe, K.; Bando, M.; Takayama, R.; Ichikawa, J. J. Fluorine Chem. 2015, 171, 133.
[19] Zafrani, Y.; Sod-Moriah, G.; Segall, Y. Tetrahedron 2009, 65, 5278.
[20] Zhang, W.; Wang, F.; Hu, J. B. Org. Lett. 2009, 11, 2109.
[21] Wang, F.; Huang, W. Z.; Hu, J. B. Chin. J. Chem. 2011, 29, 2717.
[22] Prakash, G. K. S.; Zhang, Z.; Wang, F.; Ni, C. F.; Olah, G. A. J. Fluorine Chem. 2011, 132, 792.
[23] Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2013, 52, 2092.
[24] Li, L. C.; Wang, F.; Ni, C. F.; Hu, J. B. Angew. Chem., Int. Ed. 2013, 52, 12390.
[25] Han, J. B.; Qin, H. L.; Ye, S. H.; Zhu, L; Zhang, C. P. J. Org. Chem. 2016, 81, 2506.
[26] Howard, J. L.; Schotten, C.; Alston, S. T.; Browne, D. L. Chem. Commun. 2016, 52, 8448.
[27] Thomoson, C. S.; Dolbier, Jr. W. R. J. Org. Chem. 2013, 78, 8904.
[28] Mehta, V. P.; Greaney, M. F. Org. Lett. 2013, 15, 5036.
[29] Deng, X. Y.; Lin, J. H.; Zheng, J.; Xiao, J. C. Chem. Commun. 2015, 51, 8805.
[30] Fujiwara, Y.; Dixon, J. A.; Rodrigue, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494.
[31] Lin, Y. M.; Yi, W. B.; Shen, W. Z; Lu, G. P. Org. Lett. 2016, 18, 592.
[32] Zhu, D. H.; Gu, Y.; Lu, L.; Shen, Q. L. J. Am. Chem. Soc. 2015, 137, 10547.
[33] Zhu, D. H.; Hong, X.; Li, D. Z.; Lu, L.; Shen, Q. L. Org. Process Res. Dev. 2017, 21, 1383.
[34] Yang, Y. D.; Azuma, A.; Tokunaga, E.; Yamasaki, M.; Shiro, M.; Shibata, N. J. Am. Chem. Soc. 2013, 135, 8782.
[35] Arimori, S.; Matsubara, O.; Takada, M.; Shibata, N. R. Soc. Open Sci. 2016, 3, 1601021.
[36] Gondo, S.; Matsubara, O.; Chachignon, H.; Sumii, Y.; Cahard, D.; Shibata, N. Molecules 2019, 24, 221.
[37] Jiang, L. Q.; Yi, W. B.; Liu, Q. R. Adv. Synth. Catal. 2016, 358, 3700.
[38] Zhao, X.; Wei, A. Q.; Li, T. J.; Su, Z. Y.; Chen, J.; Lu, K. Org. Chem. Front. 2017, 4, 232.
[39] Zhao, X.; Li, T. J.; Yang, B.; Qiu, D.; Lu, K. Tetrahedron 2017, 73, 3112.
[40] Jiang, L. Q.; Ding, T. Q.; Yi, W. B.; Zhang, W. Org. Lett. 2018, 20, 2236.
[41] Jiang, L. Q.; Yan, Q.; Wang, R. K.; Ding, T. Q.; Yi, W. B.; Zhang, W. Chem.-Eur. J. 2018, 24, 18749.
[42] Yan, Q.; Jiang, L. Q.; Yi, W. B.; Liu, Q. R.; Zhang, W. Adv. Synth. Catal. 2017, 359, 2471.
[43] Huang, Z. Y.; Matsubara, O.; Jia, S. C.; Tokunag, E.; Shibata, N. Org. Lett. 2017, 19, 934.
[44] Zhang, P. P.; Lü, L.; Shen, Q. L. Acta Chim. Sinica 2017, 75, 744(in Chinese). (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
[45] Hu, J. J.; Huang, Y. G.; Xu, X. H.; Qing, F. L. Chin. J. Org. Chem. 2018, 38, 177(in Chinese). (胡娟娟, 黄焰根, 徐修华, 卿凤翎, 有机化学, 2018, 38, 177.)
[46] Wu, J.; Gu, Y.; Leng, X. B.; Shen, Q. L. Angew. Chem., Int. Ed. 2015, 54, 7648.
[47] Wu, J.; Liu, Y. F.; Lu, C. H.; Shen, Q. L. Chem. Sci. 2016, 7, 3757.
[48] Wu, J.; Lu, C. H.; Lu, L.; Shen, Q. L. Chin. J. Chem. 2018, 36, 1031.
[49] Zhu, D. H.; Shao, X. X.; Hong, X.; Lu, L.; Shen, Q. L. Angew. Chem., Int. Ed. 2016, 55, 15807.
[50] Xu, B.; Wang, D. C.; Hu, Y. H.; Shen, Q. L. Org. Chem. Front. 2018, 5, 1462.
[51] Li, J. B.; Zhu, D. H.; Lv, L. Y.; Li, C. J. Chem. Sci. 2018, 9, 5781.
[52] Guo, S. H.; Zhang, X. L.; Pan, G. F.; Zhu, X. Q.; Gao, Y. R.; Wang, Y. Q. Angew. Chem., Int. Ed. 2018, 57, 1663.
[53] Li, H. Y.; Cheng, Z. R.; Tung, C. H.; Xu, Z. H. ACS Catal. 2018, 8, 8237.
[54] Xuan, J.; Zhang, Z. G.; Xiao, W. J. Angew. Chem., Int. Ed. 2015, 54, 15632.
[55] Prier, C. K.; Rankic, D. A.; MacMillan, W. C. Chem. Rev. 2013, 113, 5322.
[56] Candish, L.; Pitzer, L.; Gomez, S. A.; Glorius. F. Chem.-Eur. J. 2016, 22, 4753.
[57] Xu, W. T.; Ma, J. Y.; Yuan, X. A.; Dai, J.; Xie, J.; Zhu, C. J. Angew. Chem., Int. Ed. 2018, 57, 10357.
[58] Jouvin, K.; Matheis, C.; Goossen, L. J. Chem.-Eur. J. 2015, 21, 14324.
[59] Ding, T. Q.; Jiang, L. Q.; Yi, W. B. Org. Lett. 2018, 20, 170.
[60] Yu, J.; Lin, J. H.; Xiao, J. C. Angew. Chem., Int. Ed. 2017, 56, 16669.
[61] Yang, O.; Gooßen, L. J. Asian J. Org. Chem. 2018, 8, 650.
[62] Xu, L. J.; Wang, H. Y.; Zheng, C. W.; Zhao, G. Tetrahedron 2017, 73, 6057.
[63] Shen, F.; Zhang, P. P.; Lu, L.; Shen, Q. L. Org. Lett. 2017, 19, 1032.
[64] Ismalaj, E.; Bars, D. L.; Billard T. Angew. Chem., Int. Ed. 2016, 55, 4790.
[65] Ismalaj, E.; Billard, T. J. Fluorine Chem. 2017, 203, 215.
[66] Ismalaj, E.; Glenadel, Q.; Billard T. Eur. J. Org. Chem. 2017, 14, 1911.
[67] Xiong, H. Y.; Bayle, A.; Pannecoucke, X.; Besset, T. Angew. Chem., Int. Ed. 2016, 55, 13490.
[68] Robins, M. J.; Wnuk, S. F. J. Org. Chem. 1993, 58, 3800.
[69] Shinichi, A.; Norihiko, Y.; Tsuyoshi, F.; Shoji, H. Bull. Chem. Soc. Jpn. 2002, 75, 1597.
[70] Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org. Chem. 1999, 64, 7048.
[71] Matthews, D. P.; Persichetti, R. A.; McCarthy, J. R. Org. Prep. Proced. Int. 1994, 26, 605.
[72] Phillipps, G. H.; Bailey, E. J.; Bain, B. M.; Borella. R. A.; Buckton, J. B.; Clark, J. C.; Doherty, A. E.; English, A. F.; Fazakerley, H.; Laing, S. B.; Allman, E. L.; Robinson, J. D.; Sandford, P. E.; Sharratt, P. J.; Steeples, I. P.; Stonehouse, R. D.; Williamson, C. J. Med. Chem. 1994, 37, 3717.
[73] Aigbirhio, F. I.; Carr, R. M.; Pike, V. W.; Steel, C. J.; Sutherland, D. R. J. Labelled Compd. Radiopharm. 1997, 39, 567.
[74] Tanigawa, M.; Kuriyama, Y.; Inagi, S.; Fuchigami, T. Electrochim. Acta 2016, 199, 314.
[75] Boys, M. L.; Collington, E. W.; Finch, H.; Swanson, S.; Whitehead, J. F. Tetrahedron Lett. 1988, 29, 3365.
[76] McCarthy, J. R.; Peet, N. P.; LeTourneau, M. E.; Inbasekaran, M. J. Am. Chem. Soc. 1985, 107, 735.
[77] Geng, Y.; Liang, A. P.; Gao, X. Y.; Niu, C. S.; Li, J. Y.; Zou, D. P.; Wu, Y. S.; Wu, Y. J. J. Org. Chem. 2017, 82, 8604.
[78] Biggadike, K.; Bledsoe, R. K.; Hassell, A. M.; Kirk, B. E.; McLay, I. M.; Shewchuk, L. M.; Stewart, E. L. J. Med. Chem. 2008, 51, 3349.
[79] Zhang, W.; Zhu, L. G.; Hu, J. B. Tetrahedron 2007, 63, 10569.
[80] Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Org. Lett. 2008, 10, 557.
[81] Zhang, M. R.; Ogawa, M.; Furutsuka, K.; Yoshida, Y.; Suzuki, K. J. Fluorine Chem. 2004, 125, 1879.
[82] Boddy, I. K.; Briggs, G. G.; Harrison, R. P.; Jones, T. H.; O'Mahony, M. J.; Marlow, I. D.; Roberts, B. G.; Willis, R. J.; Bardsley, R.; Reid, R. Pestic. Sci. 1996, 48, 189.
[83] Machara, N. P.; Ault, B. S. J. Mol. Struct. 1988, 172, 129.
[84] Zhao, Q. C.; Lu, L.; Shen, Q. L. Angew. Chem., Int. Ed. 2017, 56, 11575.
[85] Guo, S. H.; Wang, M. Y.; Pan, G. F.; Zhu, X. Q.; Gao, Y. R.; Wang, Y. Q. Adv. Synth. Catal. 2018, 360, 1861.
[86] Liu, F. M.; Jiang, L. Q.; Qiu, H. Y.; Yi, W. B. Org. Lett. 2018, 20, 6270.
Outlines

/