Efficient Synthesis of Coumarin-Fused Pyrazolo[3,4-b]pyridine Derivatives Catalyzed by Niobic Acid Modified with Phosphoric Acid under Microwave Irradiation

  • Lin Wei ,
  • Zhuang Cangwei ,
  • Hu Xiuxiu ,
  • Yang Fengli
Expand
  • School of Chemistry and Environmental Engineering, Jiangsu Techology of University, Changzhou, Jiangsu 213001

Received date: 2019-07-19

  Revised date: 2019-08-25

  Online published: 2019-10-25

Supported by

Project supported by the National Natural Science Foundation of China (No. 21502074), the Qing Lan Project of Jiangsu Province and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX19_0766).

Abstract

Coumarin and pyrazolo[3,4-b]pyridine are structurally essential elements in biologically active natural compounds and are extremely important in medicinal chemistry by serving as key pharmacophores in drug discovery. In this article, the efficient synthesis of coumarin-fused pyrazolo[3,4-b]pyridine via three-component domino reaction of aldehydes, coumarin derivative and 5-aminopyrazole in one step catalyzed by niobic acid modified with phosphoric acid under microwave irradiation has been achieved. The one-pot procedure, eco-friendly catalyst and solvent as well as simple operation are the key features of this method. The structures of the products were identified by IR, NMR, and HRMS spectra.

Cite this article

Lin Wei , Zhuang Cangwei , Hu Xiuxiu , Yang Fengli . Efficient Synthesis of Coumarin-Fused Pyrazolo[3,4-b]pyridine Derivatives Catalyzed by Niobic Acid Modified with Phosphoric Acid under Microwave Irradiation[J]. Chinese Journal of Organic Chemistry, 2020 , 40(2) : 408 -416 . DOI: 10.6023/cjoc201907026

References

[1] El-Borai, M. A.; Rizk, H. F.; Beltagy, D. M.; El-Deeb, I. Y. Eur. J Med. Chem. 2013, 66, 415.
[2] De Mello, H.; Echevarria, A.; Bernardino, A. M.; CantoCavalheiro, M.; Leon, L. L. J. Med. Chem. 2004, 47, 5427.
[3] (a) Lin, R.; Connolly, P. J.; Lu, Y.; Chiu, G.; Li, S.; Yu, Y.; Huang, S.; Li, X.; Emanuel, S. L.; Middleton, S. A.; Gruninger, R. H.; Adams, M.; Fuentes-Pesquera A. R.; Greenberger, L. M. Bioorg. Med. Chem. Lett. 2007, 17, 4297.
(b) Revesz, L.; Blum, E.; Padova, F. E. D.; Buhl, T.; Feifel, R.; Gram, H.; Hiestand, P.; Manning, U.; Neumann, U.; Rucklin, G. Bioorg. Med. Chem. Lett. 2006, 16, 262.
[4] (a) Parker, W. B. Chem. Rev. 2009, 109, 2880.
(b) Miliutina, M.; Janke, J.; Hassan, S.; Zaib, S.; Iqbal, J. Lecka, J.; Sévigny, J.; Villinger, A.; Friedrich, A.; Lochbrunner, S.; Langer, P. Org. Biomol. Chem. 2018, 16, 717.
[5] (a) Ghosh, A.; Khan, A. T. Tetrahedron Lett. 2014, 55, 2006.
(b) Babu, P. A.; Narasu, M. L.; Srinivas, K. ARKIVOC 2007, ii, 247.
(c) Trujillo, J. I.; Kiefer, J. R.; Huang, W.; Thorarensen, A.; Xing, L.; Caspers, N. L.; Day, J. E.; Mathis, K. J.; Kretzmer, K. K.; Reitz, B. A.; Weinberg, R. A.; Stegeman, R. A.; Wrightstone, A.; Christine, L.; Compton, R.; Li, X. Bioorg. Med. Chem. Lett. 2009, 19, 908.
(d) Svetlik, J.; Veizerova, L.; Mayer, T. U.; Catarinella, M. Bioorg. Med. Chem. Lett. 2010, 20, 4073.
(e) Chioua, M.; Samadi, A.; Soriano, E.; Lozach, O.; Meijer, L.; Marco-Contelles, J. Bioorg. Med. Chem. Lett. 2009, 19, 4566.
[6] (a) Luo, K. W.; Sun, J. G.; Chan, J. W.; Yang, L.; Wu, S. H.; Fung, K. P.; Liu, F. Y. Chemotherapy 2011, 57, 449.
(b) Bhinder, C. K.; Kaur, A. Int. J. Pharm. Res. Bio-Sci. 2014, 3, 560.
(c) Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Eur. J. Med. Chem. 2016, 119, 141.
[7] (a) Poole, S. K.; Poole, C. F. Analyst 1994, 119, 113.
(b) Riveiro, M. E.; De Kimpe, N.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Curr. Med. Chem. 2010, 17, 1325.
[8] (a) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.; Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A. L.; Bartus, H. R. J. Med. Chem. 1993, 36, 4131.
(b) Spino, C.; Dodier, M. Bioorg. Med. Chem. Lett. 1998, 8, 3475.
(c) Kostova, I.; Mojzis, J. Future HIV Ther. 2007, 1, 315.
[9] (a) Shin, E.; Choi, K. M.; Yoo, H. S.; Lee, C. K.; Hwang, B. Y.; Lee, M. K. Biol. Pharm. Bull. 2010, 33, 1610.
(b) Keri, R. S.; Sasidhar, B. S.; Nagaraja, B. M.; Santos, M. A. Eur. J. Med. Chem. 2015, 100, 257.
[10] (a) Piller, N. Br. J. Exp. Pathol. 1975, 56, 554.
(b) Bansal, Y.; Sethi, P.; Bansal, G. Med. Chem. Res. 2013, 22, 3049.
[11] Whang, W. K.; Park, H. S.; Ham, I.; Oh, M.; Namkoong, H.; Kim, H. K.; Hwang, D. W.; Hur, S. Y.; Kim, T. E.; Park, Y. G. Exp. Mol. Med. 2005, 37, 436.
[12] Rosselli, S.; Maggio, A. M.; Faraone, N.; Spadaro, V.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K. H.; Bruno, M. Nat. Prod. Commun. 2009, 4, 1701.
[13] Crichton, E. G.; Waterman, P. G. Phytochemistry 1978, 17, 1783.
[14] (a) Baek, N. I.; Ahn, E. M.; Kim, H. Y.; Park, Y. D. Arch. Pharm. Res. 2000, 23, 467.
(b) Teng, M. C.; Lin, H.; Ko, F. N.; Wu, T. S. Huang, T. F. Naunyn-Schmiedeberg's Arch. Pharmacol. 1994, 349, 202.
(c) Fort, D.; Rao, K.; Jolad, S.; Luo, J.; Carlson, T.; King, S. Phytomedicine 2000, 6, 465.
[15] (a) Gallo, J. M. R.; Teixeim, S.; Sehuchardt, U. Appl. Catal. A 2006, 311, 199.
(b) Prasetyoko, D.; Ramli, Z.; Endud, S. Mater. Chem. Phys. 2005, 93(2~3), 443.
[16] Kurosaki, A.; Okuyama, T.; Okazaki, S. Bull. Chem. Soc. Jpn. 1987, 60, 3541.
[17] (a) Lin, W.; Hu, X. X.; Song, S.; Cai, Q.; Wang, Y.; Shi, D. Q. Org. Biomol. Chem. 2017, 15, 7909.
(b) Liu, X. C.; Lin, W.; Wang, H. Y.; Huang, Z. B.; Shi, D. Q. J. Heterocycl. Chem. 2014, 51, 1036.
(c) Wu, J. R.; Luo, H.; Wang, T.; Sun, H, M.; Zhang, Q. Chai, Y. H.; Tetrahedron Lett. 2019, 75, 1052.
(d) Arumugam, N.; Almansour, A I.; Kumar, R, S.; Altaf, M.; Mahalingam, S. M.; Periyasami, G.; Menéndez, J. C.; Al-Aizari, A. J. M. A. Tetrahedron Lett. 2019, 60, 602.
(e) Yan, C. G.; Wang, Q. F.; Song, X. K.; Sun, J. J. Org. Chem. 2009, 74, 710.
(f) Evdokimov, N. M.; Kireev, A. S.; Yakovenko, A. A.; Yu, M.; Magedov, A. I. V.; Kornienko, A. J. Org. Chem. 2007, 72, 3433.
(g) Wang, J. X.; Lin, W.; Liu, H. T.; Hu, M. H.; Feng, X.; Huang, Z. B.; Shi, D. Q. Chin. J. Org. Chem. 2015, 35, 927(in Chinese). (王菊仙, 林伟, 刘洪涛, 胡明华, 冯贤, 黄志斌, 史达清, 有机化学, 2015, 35, 927.)
[18] (a) Gao, G.; Wang, P.; Liu, P.; Zhang, W. H.; Mo, L. P.; Zhang, Z. H. Chin. J. Org. Chem. 2018, 38, 846(in Chinese). (高歌, 王萍, 刘鹏, 张卫红, 默丽萍, 张占辉, 有机化学, 2018, 38, 846.)
(b) Lin, W.; Cai, Q.; Zheng, C. Z.; Zheng, Y. X.; Shi, D. Q. J. Org. Chem. 2017, 37, 2392(in Chinese). (林伟, 蔡琦, 郑纯智, 郑永祥, 史达清, 有机化学, 2017, 37, 2392.
[19] (a) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
(b) Knoevenagel, E.; Fries, A. Ber. Dtsch. Chem. Ges. 1898, 31, 761.
(c) Zecher, W.; Kröhnke, F. Chem. Ber. 1961, 94, 690.
(d) Zecher, W.; Kröhnke, F. Chem. Ber. 1961, 94, 698.
(e) Allais, C.; Liéby-Muller, F.; Rodriguez, J.; Constantieux, T. Eur. J. Org. Chem. 2013, 4131.
(f) Shi, Z.; Loh, T.-P. Angew. Chem., Int. Ed. 2013, 52, 8584.
(g) Wu, Q.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16, 1350.
(h) Wan, J. P.; Jing, Y. F.; Hu, C. F.; Sheng, S. R. J. Org. Chem. 2016, 81, 6826.
(i) Li, Y.; Wang, G. D.; Hao, G. F.; Wan, J. P. Tetrahedron Lett. 2019, 60, 219.
[20] Bogdal, D. J. Chem. Res., Synop. 1998, 8, 468.
[21] (a) Zhang, M.; Liu, P.; Liu, Y. H.; Shang, Z. R.; Hu, H. C.; Zhang, Z. H. RSC Adv. 2016, 6, 106160.
(b) Saikh, F.; De, R.; Ghosh, S. Tetrahedron Lett. 2014, 55, 6171.
(c) Jia, X. D.; Yu, L. L.; Huo, C. D.; Wang, Y. X.; Liu, J.; Wang, X. C. Tetrahedron Lett. 2014, 55, 264.
(d) Ko, K. Y.; Kim, J. Y. Tetrahedron Lett. 1999, 40, 3207.
(e) Shamim, T.; Monika, G.; Paul, S. J. Mol. Catal. A:Chem. 2009, 302, 15.
Outlines

/