Research Progress in Design, Synthesis and Application for Quinoidal Heterocyclic Compounds

  • Cai Jinfang ,
  • Jiang Hua ,
  • Cui Zhihua ,
  • Chen Weiguo
Expand
  • a Engineering Research Center for Eco-dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018;
    b Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Hangzhou 310018

Received date: 2019-09-15

  Revised date: 2019-10-14

  Online published: 2019-11-01

Supported by

Project supported by the Public Welfare Technology Research Project of Zhejiang Province (No. LGG18B060003), the National Natural Science Foundation of China (Nos. 21808210, 51673176) and the Fundamental Research Funds of Zhejiang Sci-Tech University (No. 2019Q018).

Abstract

Quinoidal heterocyclic (thiophene, pyrrole, furan, etc.) molecules have the characteristics of rigid backbone, low highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) level, narrow band gap and high molar extinction coefficient, and so on. Because of their planar structures, quinoidal molecules usually have strong intermolecular charge transfer ability due to the strong intermolecular interaction. Up to now, quinoidal heterocyclic molecules have become a research hotspot in the field of organic semiconductor materials, especially in the field of organic field effect transistors. According to the structural features of quinoidal heterocyclic molecules and the classification basis of terminal groups, the research progress of quinoidal heterocyclic compounds in molecular design, synthesis and application in recent years is reviewed, and the development of quinoidal heterocyclic molecules is prospected.

Cite this article

Cai Jinfang , Jiang Hua , Cui Zhihua , Chen Weiguo . Research Progress in Design, Synthesis and Application for Quinoidal Heterocyclic Compounds[J]. Chinese Journal of Organic Chemistry, 2020 , 40(2) : 351 -363 . DOI: 10.6023/cjoc201909022

References

[1] Casado, J.; Rocio, P. O.; Juan, T. N. Chem. Soc. Rev. 2012, 41, 5672.
[2] Burrezo, P. M.; Zafra, J. L.; Navarrete, J. T. L.; Casado, J. Angew. Chem., Int. Ed. 2017, 56, 2250.
[3] Wang, R.-H.; Qiao, X.-L.; Li, H.-X. Chin. Sci. Bull. 2016, 61, 296(in Chinese). (王瑞豪, 乔小兰, 李洪祥, 科学通报, 2016, 61, 296.)
[4] Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; Garnier, F. Adv. Mater. 1996, 8, 242.
[5] Yui, K.; Ishida, H.; Aso, Y.; Otsubo, T.; Ogura, F. Chem. Lett. 1987, 16, 2339.
[6] Yui, K.; Aso Y.; Otsubo, T.; Ogura, F. Bull. Chem. Soc. Jpn. 1989, 62, 1539.
[7] Yui, K.; Ishida, H.; Aso, Y.; Otsubo T.; Ogura, F.; Kawamoto, A.; Tanaka, J. Bull. Chem. Soc. Jpn. 1989, 62, 1547.
[8] Higuchi, H.; Nakayama, T.; Koyama, H.; Ojima, J.; Wada, T.; Sasabe, H. Bull. Chem. Soc. Jpn. 1995, 68, 2363.
[9] Uno, M.; Seto, K.; Takahashi, S. J. Chem. Soc., Chem. Commun. 1984, 932.
[10] Pappenfus, T. M.; Hermanson, B. J.; Helland, T. J.; Lee, G. G. W.; Drew, S. M.; Mann, K. R.; McGee, K. A.; Rasmussen, S. C. Org. Lett. 2008, 10, 1553.
[11] Getmanenko, Y. A.; Purcell, T. A.; Hwang, D. K.; Kippelen, B.; Marder, S. R. J. Org. Chem. 2012, 77, 10931.
[12] Pappenfus, T. M.; Chesterfield, R. J.; Frisbie, C. D.; Mann, K. R.; Casado, J.; Raff, J. D.; Miller, L. L. J. Am. Chem. Soc. 2002, 124, 4184.
[13] Chesterfield, R. J.; Newman, C. R.; Papperfus, T. M.; Ewbank, P. C.; Haukaas, M. H.; Mann, K. R.; Miller, L. L.; Frisbie, C. D. Adv. Mater. 2003, 15, 1278.
[14] Janzen, D. E.; Burand, M. W.; Ewbank, P. C.; Pappenfus, T. M.; Higuchi, H.; Filho, D. A. S.; Young, V. G.; Brédas, J. L.; Mann, K. R. J. Am. Chem. Soc. 2004, 126, 15295.
[15] Takahashi, T.; Matsuoka, K.; Takimiya, K.; Otsubo, T.; Aso, Y. J. Am. Chem. Soc. 2005, 127, 8928.
[16] Berlin, A.; Grimoldi, S.; Zotti, G.; Osuna, R. M.; Delgado, M. C. R.; Ortiz, R. P.; Casado, J.; Hernández, V.; Navarrete, J. T. L. J. Phys. Chem. B 2005, 109, 22308.
[17] Handa, S.; Miyazaki, E.; Takimiya, K.; Kunugi, Y. J. Am. Chem. Soc. 2007, 129, 11684.
[18] Wu, Q.-H.; Ren, S.-D.; Wang, M.; Qiao, X.-L.; Li, H.-X.; Gao, X.-K.; Yang, X.-D.; Zhu, D.-B. Adv. Funct. Mater. 2013, 23, 2277.
[19] Nakano, M.; Osaka, I.; Takimiya, K. J. Mater. Chem. C 2015, 3, 283.
[20] Yamamoto, K.; Ie, Y.; Nitani, M.; Tohnai, N.; Kakiuchi, F.; Zhang, K.; Pisula, W.; Asadi, K.; Blom, P. W. M.; Aso, Y. J. Mater. Chem. C 2018, 6, 7493.
[21] Handa, S.; Miyazaki, E.; Takimiya, K. Chem. Commun. 2009, 3919.
[22] Kunugi, Y.; Takimiya, K.; Toyoshima, Y.; Yamashita, K.; Aso, Y.; Otsubo, T. J. Mater. Chem. 2004, 14, 1367.
[23] Qiao, Y.-L.; Zhang, J.; Xu, W.; Zhu, D.-B. J. Mater. Chem. 2012, 22, 5706.
[24] Xiong, Y.; Tao, J.-W.; Wang, R.-H.; Qiao, X.-L.; Yang, X.-D.; Wang, D.-L.; Wu, H.-Z.; Li, H.-X. Adv. Mater. 2016, 28, 5949.
[25] Qiao, Y.-L.; Guo, Y.-L.; Yu, C.-M.; Zhang, F.-J.; Xu, W.; Liu, Y.-Q.; Zhu, D.-B. J. Am. Chem. Soc. 2012, 134, 4084.
[26] Zhong, H.-L.; Smith, J.; Rossbauer, S.; White, A. J. P. Adv. Mater. 2012, 24, 3205.
[27] Wang, C.; Zang, Y.-P.; Qin, Y.-K.; Zhang, Q., Sun, Y.-H.; Di, C.-A.; Xu, W.; Zhu, D.-B. Chem.-Eur. J. 2014, 20, 13755.
[28] Wang, C.; Qin, Y.-K.; Sun, Y.-H.; Guan, Y.-S.; Xu, W.; Zhu, D.-B. ACS Appl. Mater. Interfaces 2015, 7, 15978.
[29] Ray, S.; Sharma, S.; Salzner, U.; Patil, S. J. Phys. Chem. C 2017, 121, 16088.
[30] Ren, L.-B.; Yuan, D.-F.; Zhu, X.-Z. Chem.-Asian J. 2019, 14, 1717.
[31] Zhang, C.; Zang, Y.-P.; Gann, E.; McNeill, C. R.; Zhu, X.-Z.; Di, C.-A.; Zhu, D.-B. J. Am. Chem. Soc. 2014, 136, 16176.
[32] Zhang, C.; Zang, Y.-P.; Zhang, F.-J.; Diao, Y.; McNeill, C. R.; Di, C.-A.; Zhu, X.-Z.; Zhu, D.-B. Adv. Mater. 2016, 28, 8456.
[33] Zhang, C.; Yuan, D.-F.; Wu, H.; Gann, E.; Thomsen, L.; McNeill, C.-R.; Di, C.-A.; Zhu, X.-Z.; Zhu, D.-B. J. Mater. Chem. C 2017, 5, 1935.
[34] Zhang, C.; Rivero, S. M.; Liu, W.-Y.; Casanova, D.; Zhu, X.-Z.; Casado, J. Angew. Chem., Int. Ed. 2019, 58, 11291.
[35] Chonan, T.; Takahashi, K. Bull. Chem. Soc. Jpn. 2004, 77, 1487.
[36] Kozaki, M.; Sugimura, K.; Ohnishi, H.; Okada, K. Org. Lett. 2006, 8, 5235.
[37] Kashiki, T.; Miyazaki, E.; Takimiya, K. Chem. Lett. 2009, 38, 568.
[38] Yanai, N.; Mori, T.; Shinamura, S.; Osaka, I.; Takimiya, K. Org. Lett. 2014, 16, 240.
[39] Mori, T.; Yanai, N.; Osaka, I.; Takimiya, K. Org. Lett. 2014, 16, 1334.
[40] Wu, Q.-H.; Li, R..; Hong, W.; Li, H.-X.; Gao, X.-K.; Zhu, D.-B. Chem. Mater. 2011, 23, 3138.
[41] Li, J.; Qiao, X.-L.; Xiong, Y.; Li, H.-X.; Zhu, D.-B. Chem. Mater. 2014, 26, 5782.
[42] Xia, D.-B.; Keerthi, A.; An, C.-B.; Baumgarten, M. Org. Chem. Front. 2017, 4, 18.
[43] Jiang, H.; Oniwa, K.; Xu, Z. Q.; Bao, M.; Yamamoto, Y.; Jin, T.-N. Bull. Chem. Soc. Jpn. 2017, 90, 789.
[44] Suzuki, Y.; Miyazaki, E.; Takimiya, K. J. Am. Chem. Soc. 2010, 132, 10453.
[45] Jiang, H.; Zhang, L.; Cai, J.-F.; Ren, J.-H.; Cui, Z.-H.; Chen, W.-G. Dyes Pigm. 2018, 151, 363.
[46] Ren, L.-B.; Liu, F.; Shen, X.-X.; Zhang, C.; Yi, Y.-P.; Zhu, X.-Z. J. Am. Chem. Soc. 2015, 137, 11294.
[47] Huang, C.-B.; Chen, H.; Li, F.-Q; An, S.-Y. Chin. J. Org. Chem. 2019, 39, 2467(in Chinese). (黄池宝, 陈会, 李福琴, 安思雅, 有机化学, 2019, 39, 2467.)
[48] Wang, J.-J.; Qi, S.-L.; Du, J.-S.; Yang, Q.-B.; Song, Y.; Li, Y.-X. Chem. J. Chin. Univ. 2019, 40, 1397(in Chinese). (王金金, 戚少龙, 杜建时, 杨清彪, 宋岩, 李耀先, 高等学校化学学报, 2019, 40, 1397.)
[49] Suzuki, Y.; Shimawaki, M.; Miyazaki, E.; Osaka, I.; Takimiya, K. Chem. Mater. 2011, 23, 795.
[50] Ishii, A.; Horikawa, Y.; Takaki, I.; Shibata, J.; Nakayama, J.; Hoshino, M. Tetrahedron Lett. 1991, 32, 4313.
[51] Takeda, T.; Akutagawa, T. J. Org. Chem. 2015, 80, 2455.
[52] Kawase, T.; Ueno, N.; Oda, M. Tetrahedron Lett. 1992, 33, 5405.
[53] Bhattacharyya, K.; Dey, D.; Datta, A. J. Phys. Chem. C 2019, 123, 4749.
[54] Mazaki, Y.; Murata, S.; Kobayashi, K. Tetrahedron Lett. 1991, 32, 4367.
[55] Kawata, S.; Pu, Y. J.; Saito, A.; Kurashige, Y.; Beppu, T.; Katagiri, H.; Hada, M.; Kido, J. Adv. Mater. 2016, 28, 1585.
[56] Takahashi, K.; Suzuki, T. J. Am. Chem. Soc. 1989, 111, 5483.
[57] Kan, Z.-P.; Colella, L.; Canesi, E. V.; Lerario, G.; Kumar, R. S. S.; Bonometti, V.; Mussini, P. R.; Cavallo, G.; Terraneo, G.; Pattanasattayavong, P.; Anthopoulos, T. D.; Bertarelli, C.; Keivanidis, P. E. Sol. Energy Mater. Sol. Cells 2014, 120, 37.
[58] Agostinelli, T.; Caironi, M.; Natali, D.; Sampietro, M.; Dassa, G.; Canesi, E. V.; Bertarelli, C.; Zerbi, G.; Cabanillas-Gonzalez, J.; Silvestri, S. D.; Lanzani, G. J. Appl. Phys. 2008, 104, 114508.
[59] Fazzi, D.; Canesi, E. V.; Negri, F.; Bertarelli, C.; Castiglioni, C. ChemPhysChem 2010, 11, 3685.
[60] Canesi, E. V.; Fazzi, D.; Colella, L.; Bertarelli, C.; Castiglioni, C. J. Am. Chem. Soc. 2012, 134, 19070.
[61] Colella, L.; Brambilla, L.; Nardone, V.; Parisini, E.; Castiglioni, C.; Bertarelli, C. Phys. Chem. Chem. Phys. 2015, 17, 10426.
[62] Francesco, T.; Colella, L.; Maghsoumi, A.; Martí-Rujas, J.; Pa-risini, E.; Tommasini, M.; Bertarelli, C.; Barbon, A. J. Phys. Chem. C 2016, 120, 5732.
[63] Tormos, G. V.; Belmore, K. A.; Cava, M. P. J. Am. Chem. Soc. 1993, 115, 11512.
[64] Hwang, H.; Khim, D.; Yun, J. M.; Jung, E.; Jang, S. Y.; Jang, Y. H.; Noh, Y. Y.; Kim, D. Y. Adv. Funct. Mater. 2015, 25, 1146.
[65] Ren, L.-B.; Fan, H.-J.; Huang, D.-Z.; Yuan, D.-F.; Di, C.-A.; Zhu, X.-Z. Chem.-Eur. J. 2016, 22, 17136.
[66] Deng, Y.-F.; Sun, B.; Quinn, J.; He, Y.-H.; Ellard, J.; Guo, C.; Li, Y.-N. RSC Adv. 2016, 6, 45410.
[67] Deng, Y.-F.; Quinn, J.; Sun, B.; He Y.-H.; Ellard, J.; Li, Y.-N. RSC Adv. 2016, 6, 34849.
[68] Deng, Y.-F.; Sun, B.; He, Y.-H.; Quinn, J.; Guo, C.; Li, Y.-N. Angew. Chem., Int. Ed. 2016, 55, 3459.
[69] Kozaki, M.; Isoyama, A.; Akita, K.; Okada, K. Org. Lett. 2005, 7, 115.
[70] Kozaki, M.; Isoyama, A.; Okada, K. Tetrahedron Lett. 2006, 47, 5375.
[71] Ay, E.; Furukawa, S.; Nakamura, E. Org. Chem. Front. 2014, 1, 988.
[72] Rudebusch, G. E.; Fix, A. G.; Henthorn, H. A.; Vonnegut, C. L.; Zakharov, L. N.; Haley, M. M. Chem. Sci. 2014, 5, 3627.
[73] Shi, X.-L.; Burrezo, P. M.; Lee, S.-S.; Zhang, W.-H.; Zheng, B.; Dai, G.-L.; Chang, J.-J.; Navarrete, J. T. L.; Huang, K. W.; Kim, D. H.; Casado, J.; Chi, C. Y. Chem. Sci. 2014, 5, 4490.
[74] Shi, X.-L.; Lee, S.-S.; Son, M.-J.; Zheng, B.; Chang, J.-J.; Jing, L.-Z.; Huang, K.-W.; Kim, D.-H.; Chi, C.-Y. Chem. Commun. 2015, 51, 13178.
[75] Shi, X.-L.; Quintero, E.; Lee, S.-S.; Jing, L.-Z.; Herng, T. S.; Zheng, B.; Huang, K. W.; Navarrete, J. T. L.; Ding, J.; Kim, D. H.; Casado, J.; Chi, C.-Y. Chem. Sci. 2016, 7, 3036.
[76] Tan, J.-H.; Huo, Y.-P.; Cai, N.; Ji, S.-M.; Li, Z.-Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37, 2457(in Chinese). (谭继华, 霍延平, 蔡宁, 籍少敏, 李宗植, 张力, 有机化学, 2017, 37, 2457.)
[77] Inoue, S.; Mikami, S.; Aso, Y.; Otsubo, T.; Wada, T.; Sasabe, H. Synth. Met. 1997, 84, 395.
[78] Holzmüller, F.; Gräßler, N.; Sedighi, M.; Müller, E.; Knupfer, M.; Zeika, O.; Vandewal, K.; Koerner, C.; Leo, K. Org. Electron. 2017, 45, 198.
[79] Takahashi, T.; Takimiya, K.; Otsubo, T.; Aso, Y. Org. Lett. 2005, 7, 4313.
[80] Guegano, X.; Kanibolotsky, A. L.; Blum, C.; Mertens, S. F. L.; Liu, S. X.; Neels, A.; Hagemann, H.; Skabara, P. J.; Leutwyler, S.; Wandlowski, T.; Hauser, A.; Decurtins, S. Chem.-Eur. J. 2009, 15, 63.
[81] Zhang, Q.-Q.; Jiang, K.-J.; Huang, J.-H.; Zhao, C.-W.; Zhang, L.-P.; Cui, X.-P.; Su, M.-J.; Yang, L.-M.; Song, Y.-L.; Zhou, X.-Q. J. Mater. Chem. A 2015, 3, 7695.
[82] Gräßler, N.; Wolf, S.; Holzmüller, F.; Zeika, O.; Vandewal, K.; Leo, K. Eur. J. Org. Chem. 2019, 845.
[83] Cai, J.-F.; Chen, W.-G.; Cui, Z.-H.; Jiang, H. J. Text. Res. 2018, 39, 81(in Chinese). (蔡金芳, 陈维国, 崔志华, 江华, 纺织学报, 2018, 39, 81.)
[84] Jiang, H.; Hu, Q.; Cai, J.-F.; Cui, Z.-H.; Zheng, J.-H.; Chen, W.-G. Dyes Pigm. 2019, 166, 130.
Outlines

/