Biological Activities of 3-(5-Oxazolyl)indole Natural Products and Advances on Synthesis of Its Derivatives

  • Shi Zhan ,
  • Nie Kerui ,
  • Liu Chang ,
  • Zhang Mingzhi ,
  • Zhang Weihua
Expand
  • a College of Sciences, Nanjing Agricutural University, Nanjing 210095;
    b Department of Chemistry, Fudan University, Shanghai 200433

Received date: 2019-07-28

  Revised date: 2019-10-03

  Online published: 2019-11-07

Supported by

Project supported by the National Natural Science Foundation of China (No. 21602110), the National Key R&D Program of China (No. 2018YFC1602804), the Jiangsu Provincial Science Foundation for Youths (No. BK20160734) and the Fundamental Research Funds for the Central Universities (Nos. KYTZ201604, KYLH201908).

Abstract

3-(5-Oxazolyl)indole-type natural products such as pimprinine and streptochlorin, widely exist in marine microorganism, because of their diverse biological activity, 3-(5-oxazolyl)indoles show good research and development potential in the field of medicine and pesticide. Numerous studies have been performed to synthesize 3-(5-oxazolyl)indole-type natural products, in which the construction of indole ring and oxazole ring is the most important part. In this paper, the reported natural products with 3-(5-oxazolyl)indole skeleton structure and their biological activities are summarized, and the synthetic methods for 3-(5-oxazolyl)indole skeleton and some of their mechanism are also reviewed. The application prospect of 3-(5-oxazol-yl)indole as a dominant active structure in the future was discussed.

Cite this article

Shi Zhan , Nie Kerui , Liu Chang , Zhang Mingzhi , Zhang Weihua . Biological Activities of 3-(5-Oxazolyl)indole Natural Products and Advances on Synthesis of Its Derivatives[J]. Chinese Journal of Organic Chemistry, 2020 , 40(2) : 327 -338 . DOI: 10.6023/cjoc201907047

References

[1] Zhang, M. Z.; Chen, Q.; Yang, G. F. Eur. J. Med. Chem. 2015, 89, 421.
[2] Li, Q. X.; Shi, X. F.; Huang, Z.; Tian, X. P.; Wang, F. Z. J. Trop. Oceanogr. 2013, (1), 35(in Chinese). (李庆欣, 史雪凤, 黄智, 田新朋, 王发左, 热带海洋学报, 2013, (1), 35.)
[3] Bhate, D. S.; Hulyalkar, R. K.; Menon, S. K. Experientiu 1960, 16, 504.
[4] Bhate, D. S.; Ambekar, G. R.; Bhatnagar, K. K.; K., H. R. Hind. Antibiot. Bull. 1961, 4, 139.
[5] Joshi, B. S.; Taylor, W. I.; Bhate, D. S.; Karmarkar, S. S. Tetrahedron 1963, 19, 1437.
[6] Koyama, Y.; Yokose, K.; Dolby, L. J. Agric. Biol. Chem. 1981, 45, 1285.
[7] Naik, S. R.; Harindran, J.; Varde, A. B. J. Biotechnol. 2001, 88, 1.
[8] Roy, S.; Haque, S.; Gribble, G. W. Synthesis 2006, 3948.
[9] Khan, S.; Ahmed, M. S.; Arakawa, O.; Onoue, Y. J. J. Aquacult. Bamidgeh. 1995, 47, 137.
[10] Khan, S.; Arakawa, O.; Onoue, Y. Phycologia 1996, 35, 239.
[11] Pettit, G. R.; Knight, J. C.; Herald, D. L.; Davenport, R.; Pettit, R. K.; Tucker, B. E.; Schmidt, J. M. J. Nat. Prod 2002, 65, 1793.
[12] Miao, Y. P.; Wen, R.; Hitoshi, A.; Zhou, P. G. Acta Pharm. Sinica 2004, 39, 37.
[13] Watanabe, H.; Amano, S.; Yoshida, J.; Takase, Y.; Miyadoh, S.; Sasaki, T.; Hatsu, M.; Takeuchi, Y.; Komada, Y. Meiji Seika Kenkyu Nenpo 1988, 27, 55.
[14] Shin, H. J.; Jeong, H. S.; Lee, H. S.; Park, S. K.; Kim, H. M.; Kwon, H. J. J. Microbiol. Biotechnol. 2007, 17, 1403.
[15] Romero, F. A.; Du, W.; Hwang, I.; Rayl, T. J.; Kimball, F. S.; Leung, D.; Hoover, H. S.; Apodaca, R. L.; Breitenbucher, J. G.; Cravatt, B. F.; Boger, D. L. J. Med. Chem. 2007, 50, 1058.
[16] Shin, D. Y.; Shin, H. J.; Kim, G. Y.; Cheong, J.; Choi, I. W.; Kim, S. K.; Moon, S. K.; Kang, H. S.; Choi, Y. H. J. Microbiol. Biotechnol. 2008, 18, 1862.
[17] Shim, D. W.; Shin, H. J.; Han, J. W.; Ji, Y. E.; Jang, C. H.; Koppula, S.; Kang, T. B.; Lee, K. H. Toxicol. Appl. Pharm. 2015, 284, 227.
[18] Takahashi, S.; Matsunaga, T.; Hasegawa, C.; Saito, H.; Fujita, D.; Kiuchi, F.; Tsuda, Y. Chem. Pharm. Bull. 1998, 46, 1527.
[19] Davies, J. R.; Kane, P. D.; Moody, C. J.; Slawin, A. M. Z. J. Org. Chem. 2005, 70, 5840.
[20] Miao, Y. P. Ph.D. Dissertation, Fudan University, Shanghai, 2003(in Chinese). (缪宇平, 博士论文, 复旦大学, 上海, 2003.)
[21] Diaye, N.; Guella, G.; Mancini, I.; Pietra, F. Tetrahedron Lett. 1996, 37, 3049.
[22] Lindquist, N.; Fenical, W.; Vanduyne, G. D.; Clardy, J. J. Am. Chem. Soc. 1991, 113, 2303.
[23] Nicolaou, K. C.; Chen, D. Y.; Huang, X.; Ling, T.; Bella, M.; Snyder, S. A. J. Am. Chem. Soc. 2004, 126, 12888.
[24] Somei, M.; Sato, H.; Komura, N.; Kaneko, C. Heterocycles 1985, 23, 1101.
[25] Wipf, P.; Yokokawa, F. Tetrahedron Lett. 1998, 39, 2223.
[26] Wipf, P.; Methot, J. L. Org. Lett. 2001, 3, 1261.
[27] Bagley, M. C.; Hind, S. L.; Moody, C. J. Tetrahedron Lett. 2000, 41, 6897.
[28] Kreisberg, J. D.; Magnus, P.; McIver, E. G. Tetrahedron Lett. 2001, 42, 627.
[29] Roy, S.; Eastman, A.; Gribble, G. W. Org. Biomol. Chem. 2006, 4, 3228.
[30] Wipf, P.; Miller, C. P. J. Org. Chem. 1993, 58, 3604.
[31] Bergman, J.; Backvall, J. E.; Lindstrom, J. O. Tetrahedron 1973, 29, 971.
[32] Deng, W. P.; Nam, G.; Fan, J. F.; Kirk, K. L. J. Org. Chem. 2003, 68, 2798.
[33] Jiang, B.; Gu, X. H. Bioorgan. Med. Chem. 2000, 8, 363.
[34] Fresneda, P. M.; Molina, P.; Sanz, M. A. Synlett 2001, 218.
[35] Radspieler, A. Ph.D. Dissertation, Humboldt University, Berlin, 2000.
[36] Oikawa, Y.; Yonemitsu, O. J. Org. Chem. 1977, 42, 1213.
[37] Kumar, D.; Sundaree, S.; Patel, G.; Rao, V. S. Tetrahedron Lett 2008, 49, 867.
[38] Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1982, 47, 2487.
[39] oser, G. F. Adv. Heterocycl. Chem. 2004, 86, 225.
[40] Kelly, T. R.; Fu, Y.; Xie, R. L. Tetrahedron Lett. 1999, 40, 1857.
[41] Doyle, K. J.; Moody, C. J. Synthesis 1994, 1021.
[42] Brain, C. T.; Paul, J. M. Synlett 1999, 1642.
[43] Nishida, A.; Fuwa, M.; Naruto, S.; Sugano, Y.; Saito, H.; Nakagawa, M. Tetrahedron Lett. 2000, 41, 4791.
[44] Liu, S. F.; Wu, Q. G.; Schmider, H. L.; Aziz, H.; Hu, N. X.; Popovic, Z.; Wang, S. N. J. Am. Chem. Soc. 2000, 122, 3671.
[45] Ketcha, D. M.; Gribble, G. W. J. Org. Chem. 1985, 50, 5451.
[46] Miyake, F.; Hashimoto, M.; Tonsiengsom, S.; Yakushijin, K.; Horne, D. A. Tetrahedron 2010, 66, 4888.
[47] Lade, D. M.; Krishna, V. S.; Sriram, D.; Rode, H. B. Chemis-tryselect 2017, 2, 1250.
[48] Dhar, T. G. M.; Shen, Z. Q.; Fleener, C. A.; Rouleau, K. A.; Barrish, J. C.; Hollenbaugh, D. L.; Iwanowicz, E. J. Bioorg. Med. Chem. Lett. 2002, 12, 3305.
[49] Van Leusen, D.; Hessen, B. Organometallics 2001, 20, 224.
[50] Houwing, H. A.; Wildeman, J.; Van Leusen, A. M. J. Heterocycl. Chem. 1981, 18, 1133.
[51] Chakrabarty, M.; Basak, R.; Harigaya, Y.; Takayanagi, H. Tetrahedron 2005, 61, 1793.
[52] Zhang, M. Z.; Chen, Q.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y. C.; Yang, G. F.; Clough, J. Eur. J. Med. Chem. 2012, 53, 283.
[53] Boto, A.; Ling, M.; Meek, G.; Pattenden, G. Tetrahedron Lett. 1998, 39, 8167.
[54] Barrett, G. M.; Kohrt, J. T. Synlett 1995, 415.
[55] Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P. Synthesis 1987, 693.
[56] Kelly, T. R.; Lang, F. R. J. Org. Chem. 1996, 61, 4623.
[57] Primas, N.; Bouillon, A.; Lancelot, J. C.; Rault, S. Tetrahedron 2009, 65, 6348.
[58] Besselievre, F.; Mahuteau-Betzer, F.; Grierson, D. S.; Piguel, S. J. Org. Chem. 2008, 73, 3278.
[59] Ohnmacht, S. A.; Mamone, P.; Culshaw, A. J.; Greaney, M. F. Chem Commun 2008, 1241.
[60] Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.
[61] Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 1970.
[62] Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379.
[63] Del Zotto, A.; Amoroso, F.; Baratta, W.; Rigo, P. Eur. J. Org. Chem. 2009, 110.
[64] Liu, W. J.; Xie, Y. X.; Yun, L. A.; Li, J. H. Synthesis 2006, 860.
[65] Alimardanov, A.; de Vondervoort, L. S. V.; de Vries, A. H. M.; de Vries, J. G. Adv. Synth. Catal. 2004, 346, 1812.
[66] Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973.
[67] Tanaka, A.; Terasawa, T.; Hagihara, H.; Sakuma, Y.; Ishibe, N.; Sawada, M.; Takasugi, H.; Tanaka, H. J. Med. Chem. 1998, 41, 2390.
[68] Lancelot, J. C.; Prunier, H.; Robba, M.; Delagrange, P.; Renard, P.; Adam, G. EP623620 A1, 1994.
[69] Zhang, F. Z.; Greaney, M. F. Org. Lett. 2010, 12, 4745.
[70] Wu, Y. D.; Peng S.; Ou-yang, Y. J.; Qian, P. C.; He, W. M.; Xiang, J. N. Acta Chim. Sinica 2012, 70, 47(in Chinese). (吴运东, 彭莎, 欧阳跃军, 钱鹏程, 何卫民, 向建南, 化学学报, 2012, 70, 47.)
[71] Zhou, H. P.; Gai, K.; Lin, A. J.; Xu, J. Y.; Wu, X. M.; Yao, H. Q. Org. Biomol. Chem. 2015, 13, 1.
[72] (a) Zhu, Y. P.; Fei, Z.; Liu, M. C.; Jia, F. C.; Wu, A. X. Org. Lett. 2013, 15, 378.
(b) Xiang, J. C.; Wang, J. G.; Wang, M.; Meng, X. G.; Wu, A. X. Tetrahedron 2014, 70, 7470.
[73] Liu, B.; Li, R.; Li, Y. A.; Li, S. Y.; Yu, J.; Zhao, B. F.; Liao, A. C.; Wang, Y.; Wang, Z. W.; Lu, A. D.; Liu, Y. X.; Wang, Q. M. J. Agric. Food Chem. 2019, 67, 1795.
[74] Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org. Chem. 1990, 55, 1959.
[75] Konopelski, J. P.; Hottenroth, J. M.; Oltra, H. M.; Veliz, E. A.; Yang, Z. C. Synlett 1996, 609.
[76] Vedejs, E.; Barda, D. A. Org. Lett. 2000, 2, 1033.
[77] Schöllkopf, U.; Schröder, R. Angew. Chem., Int. Ed. 1971, 10, 333.
[78] Batcho, A. D.; Leimgruber, W. Org. Synth. 1985, 63, 214.
[79] Amat, M.; Hadida, S.; Pshenichnyi, G.; Bosch, J. J. Org. Chem. 1997, 62, 3158.
[80] Radspieler, A.; Liebscher, J. Synthesis 2001, 745.
[81] Adreani, A.; Bonazzi, D.; Rambaldi, M.; Guarnieri, A. J. Med. Chem. 1977, 20, 1344.
[82] Olah, G. A.; Arranaghi, M.; Prakash, G. K. Synthesis 1983, 8, 636.
[83] Yang, C. J.; Chen, X. Y.; Tang, T.; He, Z. J. Org. Lett. 2016, 18, 1486
[84] Liu, X. Z.; Zhou, Y. X.; Chen, G. J.; Yang, Z. Q.; Li, Q.; Liu, P. J. Org. Biomol. Chem. 2018, 16, 3572.
Outlines

/