Propargylamine Synthesis via Three-Component Coupling Reaction Catalyzed by Recyclable Cu Nanoparticles under Solvent-Free Conditions

  • Shi Dapeng ,
  • Duan Zhongyu
Expand
  • a School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130;
    b Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130

Received date: 2019-12-03

  Revised date: 2020-01-09

  Online published: 2020-01-21

Supported by

Project supported by the National Natural Science Foundation of China (No. 51473045).

Abstract

In this paper, copper nanoparticles (Cu NPs) were synthesized from copper sulfate by hydrothermal method using hydrazine hydrate as reducing agent. The obtained catalyst was characterized by transmission electron microscope (TEM) and X-ray diffraction (XRD), and successfully used as heterogeneous catalyst to promote the three-component coupling reaction of phenylacetylene, amine and aldehyde in solvent-free. Under Cu NPs (10 mol%), 110℃ and reaction time 10 h,the catalyst exhibits excellent catalytic activity with 88% yield. It is worth noting that the catalyst system can maintain high catalytic activity with only a slight decrease after 4 cycles (all isolated yields >84%). A propargylamine synthetic method by three-component coupling reaction was provided possessing the advantages of simple post-treatment procedure, solvent-free, extensive substrate range and good reusability of catalyst.

Cite this article

Shi Dapeng , Duan Zhongyu . Propargylamine Synthesis via Three-Component Coupling Reaction Catalyzed by Recyclable Cu Nanoparticles under Solvent-Free Conditions[J]. Chinese Journal of Organic Chemistry, 2020 , 40(5) : 1316 -1322 . DOI: 10.6023/cjoc201912003

References

[1] Loni, M.; Yazdani, H.; Bazgir, A. Catal. Lett. 2018, 148, 3467.
[2] Wan, J. P.; Gan, L.; Liu, Y. Y. Org. Biomol. Chem. 2017, 15, 9031.
[3] (a) Chen, H. B.; Zhao, Y.; Liao, Y. RSC Adv. 2015, 5, 37737.
(b) Cai, L. Z.; Huang, Z.; Yang, L. Q.; Xie, X. M.; Tao, X. C. Chin. J. Org. Chem. 2018, 38, 3326(in Chinese). (蔡良珍, 黄振, 杨立群, 谢小敏, 陶晓春, 有机化学, 2018, 38, 3326.)
(c) Liang, T.-T.; Jiang, L.; Gan, M.-M.; Su, X.; Li, Z. N. Chin. J. Org. Chem. 2017, 37, 3096(in Chinese). (梁婷婷, 姜岚, 干苗苗, 苏鑫, 李争宁, 有机化学, 2017, 37, 3096.)
[4] Bolea, I.; Gella, A.; Unzeta, M. J. Neural Transm. 2013, 120, 893.
[5] Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2012, 41, 3790.
[6] Zani, L.; Bolm, C. Chem. Commun. 2006, 38, 4263.
[7] Zhang, P. Y.; Song, T.; Wang, T. T.; Zeng, H. P. Appl. Catal., B 2017, 206, 328.
[8] Kumari, S.; Shekhar, A.; Pathak, D. D. RSC Adv. 2016, 6, 15340.
[9] Varyani, M.; Khatri, P. K.; Jain, S. L. Catal. Commun. 2016, 77, 113.
[10] Sadjadi, S.; Heravi, M. M.; Malmir, M.; Noritajer, F. Mater. Chem. Phys. 2019, 223, 380.
[11] Zhou, Y. P.; He, T. T.; Wang, Z. Y. ARKIVOC 2008, 13, 80.
[12] Cao, J.; Xu, G.; Li, P. Y.; Tao, M. L.; Zhang, W. ACS Sustainable Chem. Eng. 2017, 5, 3438.
[13] Su, Y. J.; Lu, M.; Dong, B. L.; Chen, H.; Shi, X. D. Adv. Synth. Catal. 2014, 356, 692.
[14] Yadav, J. S.; Reddy, B. V. S.; Gopal, A. V. H.; Patil, K. S. Tetrahedron Lett. 2009, 50, 3493.
[15] Zhang, Y. C.; Li, P. H.; Wang, M.; Wang, L. J. Org. Chem. 2009, 74, 4364.
[16] Teimouri, A.; Chermahini, A. N.; Narimani, M. B. Korean Chem. Soc. 2012, 33, 1556.
[17] Shi, X. L.; Sun, B. Y.; Chen, Y. J.; Hua, Q. Q.; Li, P. Y. Y.; Meng, L.; Duan, P. G. J. Catal. 2019, 372, 321.
[18] Gajengi, A. L.; Sasaki, T.; Bhanage, B. M. Catal. Commun. 2015, 72, 174.
[19] Zeng, T. Q.; Chen, W. W.; Cirtiu, C. M.; Moores, A.; Song, G. H.; Li, C. J. Green Chem. 2010, 12, 570.
[20] Huo, X.; Liu, J. B. Wang, D.; Zhang, H. L.; Yang, Z. Y.; She, X. G.; Xia, P. X. J. Mater. Chem. A 2013, 1, 651.
[21] Manikandan, R.; Anitha, P.; Viswanathamurthi, P.; Malecki, J. G. Polyhedron 2016, 119, 300.
[22] Srinivas, V.; Koketsu, M. Tetrahedron 2013, 69, 8025.
[23] Huang, J. L.; Gray, D. G.; Li, C. J. Beilstein J. Org. Chem. 2013, 9, 1388.
[24] Bosica, G.; Abdilla, R.; J. Mol. Catal. A:Chem. 2017, 426, 542.
[25] Choi, Y. J.; Jang, H. Y. Eur. J. Org. Chem. 2016, 2016, 3047.
[26] Gulati, U.; Rajesh, U. C.; Rawat, D. S. Tetrahedron Lett. 2016, 57, 4468.
[27] Turberg, M.; Ardila-Fierro, K. J.; Bolm, C.; Hernández, J. G. Angew. Chem., Int. Ed. 2018, 57, 10718.
[28] Mirabedini, M.; Motamedi, E.; Kassaee, M. Z. Chin. Chem. Lett. 2015, 26, 1085.
[29] Duan, Z. Y.; Ma, G. L.; Zhang. W. J. Bull. Korean Chem. Soc. 2012, 33, 4003.
[30] Patil, S. A.; Ryu, C. H.; Kim, H. S. Int. J. Precis. Eng. Manuf.-Green Tech. 2018, 5, 239.
[31] Tajbaksh, M.; Farhang, M.; Mardani, H. R.; Hosseinzadeh, R. Chin. J. Catal. 2013, 34, 2217.
[32] Albaladejo, M. J.; Alonso, F.; Moglie, Y.; Yus, M. Eur. J. Org. Chem. 2012, 2012, 3093.
[33] Agrahari, B.; Layek, S.; Ganguly, R.; Pathak, D. D. New J. Chem. 2018, 42, 13754.
[34] Liu, X. P.; Lin, B. J.; Zhang, Z.; Lei, H.; Li, Y. Q. RSC Adv. 2016, 6, 94399.
[35] Li, P.; Regati, S.; Huang, H. C.; Arman, H. D.; Chen, B. L. Zhao, J. C. G. Chin. Chem. Lett. 2015, 26, 6.
[36] Yang, J.; Li, P.; Wang, L. Catal. Commun. 2012, 27, 58.
[37] Wang, M.; Li, P.; Wang, L. Eur. J. Org. Chem. 2008, 2008, 2255.
[38] Patil, M. K.; Keller, M.; Reddy, B. M.; Pale, P.; Sommer, J. Eur. J. Org. Chem. 2008, 4440.
[39] Zarei, Z.; Akhlaghinia, B. RSC Adv. 2016, 6, 106473.
[40] Varyani, M.; Khatri, P. K.; Jain, S. L. Catal. Commun. 2016, 77, 113.
[41] Gholinejad, M.; Karimi, B.; Aminianfar, A.; Khorasani, Mojtaba. ChemPlusChem 2015, 80, 1573.
Outlines

/