Recent Advances in Organocatalyzed Aromatization Reactions

  • Jia Qianfa ,
  • Li Yaqiong ,
  • Lin Yinhe
Expand
  • Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100

Received date: 2020-01-06

  Revised date: 2020-02-16

  Online published: 2020-03-04

Supported by

Project supported by the Yangtze Normal University (Nos. 2017KYQD123, 2018QNRC17).

Abstract

Aromatic compounds possess a particular fragrance and are widely present in natural products and pharmaceuticals. Among them, benzenes are the most abundant substructures of commercially available small-molecule drugs. Therefore, a variety of synthetic methodologies for the construction of aromatic compounds have been pursued vigorously and some significant progresses have been achieved. The dominant methods are transition metal-catalyzed benzannulation of enynes with alkynes to construct the functionalized benzenes. The synthesis of substituted benzene derivatives receives constant attentions since the formation and development of organocatalysis. Compared to metal catalysis, the organocatalytic benzannulation reaction avoids the introduction of a direct group into the pre-existed arene ring and appears to be tolerant of a broad range of substrates. While organocatalysis has emerged as a promising green and effieient synthetic tool and attracted a great deal of attention from synthetic chemists. The development of organocatalyzed aromatization reactions from acyclic starting materials is featured.

Cite this article

Jia Qianfa , Li Yaqiong , Lin Yinhe . Recent Advances in Organocatalyzed Aromatization Reactions[J]. Chinese Journal of Organic Chemistry, 2020 , 40(6) : 1502 -1513 . DOI: 10.6023/cjoc202001011

References

[1] (a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
(b) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. Beilstein J. Org. Chem. 2011, 7, 442.
[2] Davis, R.; Markham, A.; Balfour, J. A. Drugs 1996, 51, 1019.
[3] (a) O'Brien, W. M.; Bagby, G. F. Pharmacotherapy 1987, 7, 16.
(b) Ricketts, A. P.; Lundy, K. M.; Seibel, S. B. Am. J. Vet. Res. 1998, 59, 1441.
(c) Thau-Zuchman, O.; Shohami, E.; Alexandrovich, A. G.; Trembovler, V.; Leker, R. R. J. Neurotraum. 2012, 29, 375.
[4] (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
(b) Brunel, J. M. Chem. Rev. 2005, 105, 857.
(c) Schenker, S.; Zamfir, A.; Freund, M.; Tsogoeva, S. B. Eur. J. Org. Chem. 2011, 2011, 2209.
[5] (a) Calloway, N. O. Chem. Rev. 1935, 17, 327.
(b) Tanaka, K. Transition-metal-mediated Aromatic Ring Construction, Wiley, Hoboken, NJ, 2013.
(c) Sunke, R.; Nallapati, S. B.; Kumar, J. S.; Kumarb, K. S.; Pal, M. Org. Biomol. Chem. 2017, 15, 4042.
[6] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.
(c) Kotha, S.; Misra, S.; Halder, S. Tetrahedron 2008, 64, 10775.
(d) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.
[7] (a) van Otterlo, W. A.; De Koning, C. B. Chem. Rev. 2009, 109, 3743.
(b) Saito, S.; Salter, M. M.; Gevorgyan, V.; Tsuboya, N.; Tando, K.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 3970.
(c) Gevorgyan, V.; Takeda, A.; Yamamoto, Y. J. Am. Chem. Soc. 1997, 119, 11313.
(d) Gevorgyan, V.; Sadayori, N.; Yamamoto, Y. Tetrahedron Lett. 1997, 38, 8603.
[8] Ramachary, D. B.; Ramakumar, K.; Kishor, M. Tetrahedron Lett. 2005, 46, 7037.
[9] Ramachary, D. B.; Ramakumar, K.; Narayana, V. V. J. Org. Chem. 2007, 72, 1458.
[10] Hong, B. C.; Tseng, H. C.; Chen, S. H. Tetrahedron 2007, 63, 2840.
[11] Li, S. G.; Hu, X. Q.; Jia, Z. X.; Xu, P. F. Tetrahedron 2010, 66, 8557.
[12] Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z.; Shi, D. Org. Lett. 2012, 14, 4598.
[13] Song, X.; Zhang, X.; Zhang, S.; Li, H.; Wang, W. Chem.-Eur. J. 2012, 18, 9770.
[14] Link, A.; Sparr, C. Angew. Chem., Int. Ed. 2014, 53, 1.
[15] Fäseke, V. C.; Sparr, C. Angew. Chem., Int. Ed. 2016, 55, 7261.
[16] Magar, K. B. S.; Xia, L.; Lee, Y. R. Chem. Commun. 2015, 51, 8592.
[17] Ponra, S.; Vitale, M. R.; Michelet, V.; Ratovelomanana-Vidal, V. J. Org. Chem. 2015, 80, 3250.
[18] Jiang, L.; Li, H.; Zhou, J. F.; Yuan, M. W.; Li, H. L.; Chuan, Y. M.; Yuan, M. L. Synth. Commun. 2018, 48, 336.
[19] Liu, J. Y.; Yang, X. C.; Liu, Z.; Luo, Y. C.; Lu, H.; Gu, Y. C.; Fang, R.; Xu, P. F. Org. Lett. 2019, 21, 5219.
[20] (a) Nair, V.; Pillai, A. N.; Beneesh, P. B.; Suresh, E. Org. Lett. 2005, 7, 4625.
(b) Nair, V.; Vidya, N.; Biju, A. T.; Deepthi, A.; Abhilash, K. G.; Suresh, E. Tetrahedron 2006, 62,10136.
[21] (a) Zhou, Q. F.; Yang, F.; Guo, Q. X.; Xue, S. Synlett 2007, 2073.
(b) Hu, B.; Meng, L. G.; Liu, Y. L.; Liang, M.; Xue, S. Synthesis 2009, 24, 4137.
[22] Talhi, O.; Makhloufi-Chebli, M.; Pinto, D. C.; Hamdi, M.; Silva, A. M. Synlett 2013, 24, 2559.
[23] Babu, G. N.; Ayalew, H. M.; Jain, S. Med. Chem. Res. 2014, 23, 2608.
[24] Moliterno, M.; Cari, R.; Puglisi, A.; Antenucci, A.; Sperandio, C.; Moretti, E.; Di Sabato, A.; Salvio, R.; Bella, M. Angew. Chem., Int. Ed. 2016, 55, 6525.
[25] Hu, Z.; Dong, J.; Men, Y.; Li, Y.; Xu, X. Chem. Commun. 2017, 53, 1739.
[26] (a) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534.
(b) Marion, N.; Diez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988.
(c) Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. Rev. 2008, 37, 2691.
(d) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511.
(e) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.
(f) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
(g) Zhang, C.; Hooper, J. F.; Lupton, D. W. ACS Catal. 2017, 7, 2583.
(h) Zhao, M.; Zhang, Y.-T.; Chen, J.; Zhou, L. Asian J. Org. Chem. 2018, 7,54.
[27] Zhu, T. S.; Zheng, P. C.; Mou, C. L.; Yang, S.; Song, B. A.; Chi, Y. R. Nat. Commun. 2014, 5, 6.
[28] Zhu, T. S.; Mou, C. L.; Li, B. S.; Smetankova, M.; Song, B. A.; Chi, Y. R. J. Am. Chem. Soc. 2015, 137, 5658.
[29] Huang, X.; Zhu, T.; Huang, Z.; Zhang, Y.; Jin, Z.; Zanoni, G.; Chi, Y. R. Org. Lett. 2017, 19, 6188.
[30] Wu, J.; Mou, C.; Chi, Y. R. Chin. J. Chem. 2018, 36, 333.
[31] Zhu, T.; Liu, Y.; Smetankova, M.; Zhuo, S.; Mou, C.; Chai, H.; Jin, Z.; Chi, Y. R. Angew. Chem., Int. Ed. 2019, 58, 15778.
[32] Hu, J. M.; Zhang, J. Q.; Sun, B. B.; Chen, J. B.; Yu, J. Q.; Yang, X. P.; Lv, H. P.; Wang, Z.; Wang, X. W. Org. Lett. 2019, 21, 8582.
[33] Candish, L.; Levensa, A.; Lupton, D. W. Chem. Sci. 2015, 6, 2366.
[34] Jia, Q.; Wang, J. Org. Lett. 2016, 18, 2212.
[35] Zhang, C. L.; Gao, Z. H.; Liang, Z. Q.; Ye, S. Adv. Synth. Catal. 2016, 358, 2862.
[36] Zhang, C. L.; Ye, S. Org. Lett. 2016, 18, 6408.
[37] Liu, J.; Das, D. K.; Zhang, G.; Yang, S.; Zhang, H.; Fang, X. Org. Lett. 2018, 20, 64.
[38] Liu, D.; Gao, Y.; Huang, J.; Fu, Z.; Huang, W. J. Org. Chem. 2018, 83, 14210.
[39] Chen, K. Q.; Luo, Z.; Gao, Z. H.; Ye, S. Chem.-Eur. J. 2019, 25, 3253.
[40] Xu, K.; Li, W.; Zhu, S.; Zhu, T. Angew. Chem., Int. Ed. 2019, 58, 17625.
[41] (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
(b) Brunel, J. M. Chem. Rev. 2005, 105, 857.
(c) Renzi, P. Org. Biomol. Chem. 2017, 15, 4506.
(d) Witzig, R. M.; Lotter, D.; Fäseke, V. C.; Sparr, C. Chem.-Eur. J. 2017, 23,12960.
(e) Link, A.; Sparr, C. Chem. Soc. Rev. 2018, 47, 3804.
[42] Chen, Y. H.; Cheng, D. J.; Zhang, J.; Wang, Y.; Liu, X. Y.; Tan, B. J. Am. Chem. Soc. 2015, 137, 15062.
[43] Chen, Y. H.; Qi, L. W.; Fang, F.; Tan, B. Angew. Chem., Int. Ed. 2017, 56, 16308.
[44] Gao, H.; Xu, Q. L.; Keene, C.; Yousufuddin, M.; Ess, D. H.; Kürti, L. Angew. Chem., Int. Ed. 2016, 55, 566.
[45] Wang, J. Z.; Zhou, J.; Xu, C.; Sun, H.; Kürti, L.; Xu, Q. L. J. Am. Chem. Soc. 2016, 138, 5202.
[46] Saha, S.; Banerjee, A.; Maji, M. S. Org. Lett. 2018, 20, 6920.
[47] Lu, D. L.; Chen, Y. H.; Xiang, S. H.; Yu, P.; Tan, B.; Li, S. Org. Lett. 2019, 21, 6000.
[48] Liu, L.; Wei, L.; Zhang, J. Adv. Synth. Catal. 2010, 352, 1920.
[49] Zheng, X.; Lv, L.; Lu, S.; Wang, W.; Li, Z. Org. Lett. 2014, 16, 5156.
[50] Bu, M. J.; Lu, G. P.; Cai, C. Org. Chem. Front. 2016, 3, 630.
[51] Reddy, C. R.; Dilipkumar, U.; Shravya, R. Chem. Commun. 2017, 53, 1904.
[52] Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Adv. Synth. Catal. 2012, 354, 3195.
Outlines

/