Synthetic Progress of Polycyclic Xanthone

  • Xie Tao ,
  • He Haibing ,
  • Gao Shuanhu
Expand
  • a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062;
    b Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062

Received date: 2019-11-06

  Revised date: 2019-11-26

  Online published: 2020-04-02

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21971068, 21772044), the Program of Shanghai Academic/Technology Research Leader (No. 18XD1401500), the Program of Shanghai Science and Technology Committee (No. 18JC1411303), the National Young Top-Notch Talent Support Program and the Fundamental Research Funds for the Central Universities.

Abstract

Polycyclic xanthone natural products are a family of polyketides which are characterized by highly oxygenated angular hexacyclic frameworks. In the last decade, there has been a noticeable increase in reports on both synthetic and pharmacological investigations of this class of natural molecules due to their unique chemical structures and biological activities. Most members of this class of molecules show strong activities towards Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, potent antifungal activity and antitumour activity. The synthetic studies of some members of this class of natural products is summarized.

Cite this article

Xie Tao , He Haibing , Gao Shuanhu . Synthetic Progress of Polycyclic Xanthone[J]. Chinese Journal of Organic Chemistry, 2020 , 40(3) : 551 -562 . DOI: 10.6023/cjoc201911007

References

[1] Masters, K. S.; Brase, S. Chem. Rev. 2012, 112, 3717.
[2] (a) Cheng, G.; Sun, J.; Fridlender, Z. G.; Ching, L. C. S.; Wang, L. M.; Albelda, S. M. J. Biol. Chem. 2010, 285, 10553.
(b) Gobbi, S.; Zimmer, C.; Belluti, F.; Hartmann, R. W.; Rampa, A.; Recanatini, M.; Bisi, A. J. Med. Chem. 2010, 53, 5347.
(c) Palmeira, A.; Paiva, A.; Sousa, E.; Seca, H.; Almeida, G. M.; Lima, R. T.; Fernandezs, M. X.; Pinto, M.; Vasconcelos, M. H. Chem. Biol. Drug Des. 2010, 76, 43.
[3] Honda, N. K.; Pavan, F. R.; Coelho, R. G.; Micheletti, A. C.; de Andrade Leite, S. R.; Lopes, T. I. B.; Beatriz, A.; Mitsutsu, M. Y.; Brum, R. L.; Leite, C. Q. F. Phytomedicine 2010, 17, 328.
[4] Pinto, M. M.M.; Sousa, M. E.; Nascimento, M. S. Curr. Med. Chem. 2005, 12, 2517.
[5] Lesch, B.; Bräse, S. Angew. Chem., Int. Ed. 2004, 43, 115.
[6] Winter, D. K.; Sloman, D. L.; Porco, J. Nat. Prod. Rep. 2013, 30, 382.
[7] Peoples, A. J.; Zhang, Q.; Millet, W. P.; Rothfeder, M. T.; Pescatore, B. C.; Madden, A. A.; Ling, L.; Moore, C. M. J. Antibiot. 2008, 61, 457.
[8] (a) Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J. H.; Capon, R. J. Org. Lett. 2006, 8, 5267.
(b) Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J. H.; Capon, R. J. Chem.-Eur. J. 2007, 13, 1610.
[9] (a) Lee, T. M.; Carter, G. T.; Borders, D. B. J. Chem. Soc., Chem. Commun. 1989, 22, 1771.
(b) Korshalla, J.; Maiese, W. M.; Goodman, J.; Torrey, M. J.; Kantor, S.; Labeda, D. P.; Greenstein, M. J. Antibiot. 1990, 43, 1059.
[10] Kunimoto, S.; Lu, J.; Esumi, H.; Yamazaki, Y.; Kinoshita, N.; Honma, Y.; Hamada, M.; Ohsono, M.; Ishizuka, M.; Takeuchi, T. J. Antibiot. 2003, 56, 1004.
[11] Kunimoto, S.; Someno, T.; Yamazaki, Y.; Lu, J.; Esumi, H.; Naganawa, H. J. Antibiot. 2003, 56, 1012.
[12] Terui, Y.; Chu, Y.; Li, J.-Y.; Ando, T.; Yamamoto, H.; Kawamura, Y.; Tomishima, Y.; Uchida, S.; Okazaki, T.; Munetomo, E.; Seki, T.; Yamamoto, K.; Murakami, S.; Kawashima, A. Tetrahedron Lett. 2003, 44, 5427.
[13] Qiao, Y.-F.; Okazaki, T.; Ando, T.; Mizoue, K.; Kondo, K.; Eguchi, T.; Kakinuma, K. J. Antibiot. 1998, 51, 282.
[14] Kondo, K.; Eguchi, T.; Kakinuma, K.; Mizoue, K.; Qiao, Y.-F. J. Antibiot. 1998, 51, 288.
[15] Malet-Cascon, L.; Romero, F.; Espliego-Vazquez, F.; Gravalos, D.; Fernandez-Puentes, J. L. J. Antibiot. 2003, 56, 219.
[16] Rodriguez, J. C.; Puentes, J. L. F.; Baz, J. P.; Canedo, L. M. J. Antibiot. 2003, 56, 318.
[17] Omura, S.; Iwai, Y.; Hinotozawa, K.; Takahashi, Y.; Kato, J.; Nakagawa, A.; Hirano, A.; Shimizu, H.; Haneda, K. J. Antibiot. 1982, 35, 645.
[18] Omura, S.; Nakagawa, A.; Kushida, K.; Lukacs, G. J. Am. Chem. Soc. 1986, 108, 6088.
[19] Maiese, W. M.; Lechevalier, M. P.; Lechevalier, H. A.; Korshalla, J.; Goodman, J.; Wildey, M. J.; Kuck, N.; Greenstein, M. J. Antibiot. 1989, 42, 846.
[20] Carter, G. T.; Nietsche, J. A.; Williams, D. R.; Borders, D. B. J. Antibiot. 1990, 43, 504.
[21] Kelly, T. R.; Jagoe, C. T.; Li, Q. J. Am. Chem. Soc. 1989, 111, 4522.
[22] (a) Rao, A. V. R.; Yadav, J. S.; Reddy, K. K.; V., U. Tetrahedron Lett. 1991, 32, 5199.
(b) Mehta, G.; Shah, S. R.; Venkateswarlu, Y. Tetrahedron 1994, 50, 11729.
[23] Masuo, R.; Ohmori, K.; Hintermann, L.; Yoshida, S.; Suzuki, K. Angew. Chem., Int. Ed. 2009, 48, 3462.
[24] Sloman, D. L.; Bacon, J. W.; Porco, J. A. J. Am. Chem. Soc. 2011, 133, 9952.
[25] Butler, J. R.; Wang, C.; Bian, J.; Ready, J. M. J. Am. Chem. Soc. 2011, 133, 9956.
[26] Wang, Y.; Wang, C.; Butler, J. R.; Ready, J. M. Angew. Chem., Int. Ed. 2013, 52, 10796.
[27] Dai, Y.; Ma, F.; Shen, Y.; Xie, T.; Gao, S. Org. Lett. 2018, 20, 2872.
[28] (a) Bringmann, G.; Breuning, M.; Tasler, S. Synthesis 1999, 525.
(b) Bringmann, G.; Mortimer, J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.
[29] Tamiya, M.; Ohmori, K.; Kitamura, M.; Kato, H.; Arai, T.; Oorui, M.; Suzuki, K. Chem.-Eur. J. 2007, 13, 9791.
[30] (a) Karlsson, J. O.; Nguyen, N. V.; Foland, L. D.; Moore, H. W. J. Am. Chem. Soc. 1985, 107, 3392.
(b) Foland, L. D.; Karlsson, J. O.; Perri, S. T.; Schwabe, R.; Xu, S.; Patil, S.; Moore, H. W. J. Am. Chem. Soc. 1989, 111, 975.
[31] Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J. H.; Capon, R. J. Org. Lett. 2006, 8, 5267.
[32] Winter, D. K.; Endoma-Arias, M. A.; Hudlicky, T.; Beutler, J. A.; Porco, J. A. J. Org. Chem. 2013, 78, 7617.
[33] Sloman, D. L.; Mitasev, B.; Scully, S. S.; Beutler, J. A.; Porco, J. A. Angew. Chem., Int. Ed. 2011, 50, 2511.
[34] (a) Wei, H.-X.; Timmons, C.; Farag, M. A.; Pare, P. W.; Li, G. Org. Biomol. Chem. 2004, 2, 2893.
(b) Wei, H.-X.; Hu, J.; Jasoni, R. L.; Li, G.; Pare, P. W. Helv. Chim. Acta 2004, 87, 2359.
(c) Dai, Y.; Shen, Y.; Gao, S. Chin. J. Org. Chem. 2018, 38, 1608(in Chinese). (代义华, 申艳芳, 高栓虎, 有机化学, 2018, 38, 1608.)
[35] Endoma, M. A. A.; Bai, V. P.; Hansen, J.; Hudlicky, T. Org. Process Res. Dev. 2002, 6, 525.
[36] (a) Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org. Chem. 1991, 56, 3769.
(b) Talele, H. R.; Gohil, J.; Bedekar, A. V. Bull. Chem. Soc. Jpn. 2009, 82, 1182.
[37] Yang, J.; Knueppel, D.; Cheng, B.; Mans, D.; Martin, S. F. Org. Lett. 2015, 17, 114.
[38] Shi, Y. Acc. Chem. Res. 2004, 37, 488.
[39] Nicolaou, K. C.; Li, A. Angew. Chem., Int. Ed. 2008, 47, 6579.
[40] (a) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500.
(b) Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.; Noji, M.; Koga, K. J. Org. Chem. 1999, 64, 2264.
[41] Castillo-Contreras, E. B.; Dake, G. R. Org. Lett. 2014, 16, 1642.
[42] (a) Sakai, N.; Annaka, K.; Konakahara, T. J. Org. Chem. 2006, 71, 3653.
(b) Bianchi, G.; Chiarini, M.; Marinelli, F.; Rossi, L.; Arcadi, A. Adv. Synth. Catal. 2010, 352, 136.
[43] Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.
[44] Ma, A. J.; Ready, J. M. Org. Lett. 2019, 21, 1148.
[45] Hosokawa, S.; Fumiyama, H.; Fukuda, H.; Fukuda, T.; Seki, M.; Tatsuta, K. Tetrahedron Lett. 2007, 48, 7305.
[46] Barros, M. T.; Maycock, C. D.; Ventura, M. R. Chem.-Eur. J. 2000, 6, 3991.
[47] Marion, N.; Ramon, R. S.; Nolan, S. P. J. Am. Chem. Soc. 2009, 131, 448.
[48] Noji, M.; Nakajima, M.; Koga, K. Tetrahedron Lett. 1994, 35, 7983.
Outlines

/