Recent Advances in Transition Metal-O Weak Coordinated C(sp2)—H Direct Alkenylation Reaction

  • Yin Biao ,
  • Fu Manlin ,
  • Zhu Qing
Expand
  • Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2020-01-02

  Revised date: 2020-03-10

  Online published: 2020-03-31

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17B060009).

Abstract

Over the past decade, the C(sp2)-H functionalization has emerged as a powerful methodology due to its high efficiency, simplicity, and high atomic economy. Among them, weak coordination between transition metal and oxygen atom has become an important strategy for C(sp2)-H alkenylation of arenes. In this paper, the transition metal-catalyzed C(sp2)-H alkenylation of substrates containing hydroxy, aryl ether, aldehyde, carbonyl, carboxyl, amide, phosphoric acid and sulfonic acid and their derivatives groups is reviewed, and its future development trends are prospected.

Cite this article

Yin Biao , Fu Manlin , Zhu Qing . Recent Advances in Transition Metal-O Weak Coordinated C(sp2)—H Direct Alkenylation Reaction[J]. Chinese Journal of Organic Chemistry, 2020 , 40(6) : 1461 -1472 . DOI: 10.6023/cjoc202001004

References

[1] (a) Wang, S.; Yan, F.; Wang, L.-S.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291(in Chinese). (汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.)
(b) Wu, M.; Huang, X.-P.; Zhang, H.-B.; Li, P.-F. Chin. J. Org. Chem. 2019, 39, 3114(in Chinese). (吴梅, 黄新平, 张海兵, 李鹏飞, 有机化学, 2019, 39, 3114.)
(c) Dou, Y.-D.; Gu, X.-X.; Jiang, J.-J.; Zhu, Q. Prog. Chem. 2018, 30, 1317(in Chinese). (窦言东, 顾晓旭, 蒋建泽, 朱勍, 化学进展, 2018, 30, 1317.)
[2] (a) Swamy, T.; Reddy, B. V. S.; Gree, R.; Ravinder, V. ChemistrySelect 2018, 3, 47.
(b) Giri, R.; Lan, Y.; Liu, P.; Houk, K. N.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 14118.
(c) Liu, L.; Wang, G.; Jiao, J.; Li, P. Org. Lett. 2017, 19, 6132.
[3] Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
[4] Bras, J. L. B.; Muzart, J. Chem. Rev. 2011, 111, 1170.
[5] Sarkar, S. D.; Liu, W.; Kozhushkov, S. I.; Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461.
[6] Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014, 53, 2203.
[7] (a) Miura, M.; Tsuda, T.; Satoh, T.; Nomura, M. Chem. Lett. 1997, 1103.
(b) Zhang, C.; Ji, J.; Sun, P. J. Org. Chem. 2014, 79, 3200.
[8] (a) Lu, Y.; Wang, D. H.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 5916.
(b) Li, L.; Liu, Q.; Chen, J.; Huang, Y. Synlett 2019, 30, 1366.
[9] Huang, C. H.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133.
[10] (a) Yamaguchi, M.; Hayashi, A.; Hirama, M. J. Am. Chem. Soc. 1995, 117, 1151.
(b) Yadav, J. S.; Reddy, B. V. S.; Sengupta, S.; Biswas, S. K. Synthesis 2009, 1301.
(c) Rao, V. K.; Shelke, G. M.; Tiwari, R.; Parang, K.; Kumar, A. Org. Lett. 2013, 15, 2190.
[11] (a) Murai, M.; Yamamoto, M.; Takai, K. Org. Lett. 2019, 21, 3441.
(b) Murai, M.; Yamamoto, M.; Takai, K. Chem.-Eur. J. 2019, 25, 15189.
[12] Dou, Y.-D.; Kenry.; Liu, J.; Jiang, J.-Z.; Zhu, Q. Chem.-Eur. J. 2019, 25, 6896.
[13] Li, G.; Leow, D.; Wan, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2013, 52, 1245.
[14] (a) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Org. Chem. 2007, 72, 3600.
(b) Ueno, S.; Kochi, T.; Chatani, N.; Kakiuchi, F. Org. Lett. 2009, 11, 855.
[15] Padala, K.; Jeganmohan, M. Org. Lett. 2011, 13, 6144.
[16] Patureau, F. W.; Besset, T.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1064.
[17] (a) Sk, M. R.; Bera, S. S.; Maji, M. S. Adv. Synth. Catal. 2019, 361, 585.
(b) Sk, M. R.; Maji, M. S. Org. Chem. Front. 2020, 7, 19.
[18] Ali, S.; Huo, J.; Wang, C. Org. Lett. 2019, 21, 6961.
[19] (a) Tsuchikama, K.; Kuwata, Y.; Tahara, Y.; Yoshinami, Y.; Shibata, T. Org. Lett. 2007, 9, 3097.
(b) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. Org. Lett. 2014, 16, 4208.
[20] Li, G.; Wan, L.; Zhang, G.; Leow, D.; Spangler, J.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 4391.
[21] Hu, F.; Szostak, M. Chem. Commun. 2016, 52, 9715.
[22] Li, C.; Wang, S.-M.; Qin, H.-L. Org. Lett. 2018, 20, 4699.
[23] (a) Banjare, S. K.; Nanda, T.; Ravikumar, P. C. Org. Lett. 2019, 21, 8138.
(b) Pradhan, S.; Mishra, M.; De, P. B.; Banerjee, S. Org. Lett. 2020, 22, 1720.
[24] (a) Zhang, C.; Wang, M.; Fan, Z.; Sun, L.-P.; Zhang, A. J. Org. Chem. 2014, 79, 7626.
(b) Yakkala, P. A.; Giri, D.; Chaudhary, B.; Auti, P.; Sharma, S. Org. Chem. Front. 2019, 6, 2441.
(c) Dias, G. G.; Nascimento, T. A.; Almeida, A. A.; Bombaça, A. C. S.; Menna-Barreto, R. F. S.; Jacob, C.; Júnior, S. E. N. S.; Ackermann, L. Eur. J. Org. Chem. 2019, 13, 2344.
[25] Singh, K. S.; Dixneuf, P. H. Organometallics 2012, 31, 7320.
[26] (a) Patureau, F.; Besset, T.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1064.
(b) Park, S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13, 2372.
[27] Ncube, G.; Huestis, M. P. Organometallics 2019, 38, 76.
[28] (a) Boele, M. D. K.; Strijdonck, G. P. F.; Vries, A. H. M.; Kamer, P. C. J.; Vries, J. G.; Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1587.
(b) Lee, G. T.; Jiang, X.; Prasad, K.; Repic, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347, 1921.
(c) Amatore, C.; Cammoun, C.; Jutand, A. Adv. Synth. Catal. 2007, 349, 292.
(d) Lipshutz, B. H.; Nishikata, T. Org. Lett. 2010, 12, 1972.
(e) Liu, X. Z.; Hii, K. K. J. Org. Chem. 2011, 76, 8022.
(f) Schmidt, B.; Elizarov, N. Chem. Commun. 2012, 48, 4350.
(g) Kim, B. S.; Jiang, C.; Lee, D. J.; Youn, S. W. Chem. Asian J. 2010, 5, 2336.
[29] (a) Rauf, W.; Thompson, A. L.; Brown, J. M. Chem. Commun. 2009, 26, 3874.
(b) Wang, L.; Liu, S.; Li, Z.; Yu, Y. Org. Lett. 2011, 13, 6137.
[30] Tamizmani, M.; Gouranga, N.; Jeganmohan, M. ChemistrySelect 2019, 4, 2976.
[31] (a) Hashimoto, Y.; Hirano, T.; Satoh, T.; Kakiuchi, F.; Miura, M. Org. Lett. 2012, 14, 2058.
(b) Hashimoto, Y.; Hirano, K.; Satoh, T.; Kakiuchi, F.; Miura, M. J. Org. Chem. 2013, 78, 638.
[32] (a) Wang, Y.; Li, C.; Li, Y.; Yin, F.; Wang, X.-S. Adv. Synth. Catal. 2013, 355, 1724.
(b) Wang, S.-M.; Li, C.; Leng, J.; Bukhari, S. N. A.; Qin, L.-H. Org. Chem. Front. 2018, 5, 1411.
[33] Li, F.; Shen, C.; Zhang, J.; Wu, L.; Zhuo, X.; Ding, L.; Zhong, G. Adv. Synth. Catal. 2016, 358, 3932.
[34] Sun, X.; Zhao, W.; Li, B.-J. Chem. Commun. 2020, 56, 1298.
[35] Jaiswal, Y.; Kumar, Y.; Kumar, A. J. Org. Chem. 2018, 83, 1223.
[36] (a) Bu, Q; Rogge, T.; Kotek, V.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 765.
(b) Ramesh, V. B.; Muniraj, N.; Prabhu, K. R. Adv. Synth. Catal. 2019, 361, 3683.
[37] Jambu, S.; Sivasakthikumaran, R.; Jeganmohan, M. Org. Lett. 2019, 21, 1320.
[38] Zhao, P.; Niu, R.; Wang, F.; Han, K.; Li, X. Org. Lett. 2012, 14, 4166.
[39] Jiao, L.-Y.; Oestreich, M. Org. Lett. 2013, 15, 5374.
[40] Zhang, L.-Q.; Yang, S.; Huang, X.; You, J.; Song, F. Chem. Commun. 2013, 49, 8830.
[41] (a) Leitch, J. A.; Wilson, P. B.; McMullin, C. L.; Mahon, M. F.; Bhonoah, Y. I.; Williams, H.; Frost, C. G. ACS Catal. 2016, 6, 5520.
(b) Leitch, J. A.; Cook, H. P.; Bhonoah, Y.; Frost, C. G. J. Org. Chem. 2016, 81, 10081.
(c) Ma, W.; Dong, H.; Wang, D.; Ackermann, L. Adv. Synth. Catal. 2017, 359, 966.
[42] Chen, W.; Li, H.-J.; Li, Q.-Y.; Wu, Y.-C. Org. Biomol. Chem. 2020, 18, 500.
[43] Miura, M.; Tsuda, T.; Pivasa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.
[44] (a) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
(b) Wang, D. H.; Engle, K. M.; Shi, B.-F.; Yu. J.-Q. Science 2010, 327, 315.
(c) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2010, 49, 6169.
(d) Baxter, R. D.; Sale, D.; Engle, K. M.; Yu, J.-Q.; Blackmond, D. G. J. Am. Chem. Soc. 2012, 134, 4600.
[45] Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024.
[46] (a) Huang, L.; Biafora, A.; Zhang, G.; Bragoni, V.; Gooßen, L. Angew. Chem., Int. Ed. 2016, 55, 6933.
(b) Trita, A. S.; Biafora, A.; Pichette-Drapeau, M.; Weber, P.; Gooßen, L. J. Angew. Chem., Int. Ed. 2018, 57, 14580.
(c) Jambu, S.; Tamizmani, M.; Jeganmohan, M. Org. Lett. 2018, 20, 1982.
(d) Mandal, A.; Mehta, G.; Dana, S.; Baidya, M. Org. Lett. 2019, 21, 5879.
[47] Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 7567.
[48] Huang, Y.; Pi, C.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2020, 362, 1385.
[49] (a) Chan, L. Y.; Kim, S.; Ryu, T.; Lee, P. H. Chem. Commun. 2013, 49, 4682.
(b) Meng, X.; Kim, S. Org. Lett. 2013, 15, 1910.
[50] Wang, H.-L.; Hu, R.-B.; Zhang, H.; Zhou, A.-X.; Yang, S.-D. Org. Lett. 2013, 15, 5302.
[51] Jiao, L. Y.; Ferreira, A. V.; Oestreich, M. Chem. Asian J. 2016, 11, 367.
[52] (a) Unoh, Y.; Hashimoto, Y.; Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2013, 15, 3258.
(b) Itoh, M.; Hashimoto, Y.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 8098.
[53] (a) Dong, Y.; Liu, G. Chem. Commun. 2013, 49, 8066.
(b) Ma, W.; Mei, R.; Tenti, G.; Ackermann, L. Chem. Eur. J. 2014, 20, 15248.
Outlines

/