Electrocatalytic Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles

  • Li Mengfan ,
  • Wang Rong ,
  • Hao Wenjuan ,
  • Jiang Bo
Expand
  • School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116

Received date: 2020-02-23

  Revised date: 2020-03-26

  Online published: 2020-04-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 21971090), and the Postgraduate Research Innovation Program of Jiangsu Province (No. SJKY19_2003).

Abstract

1,3,4-Oxadiazoles, standing for a class of five-membered heterocyclic compounds with multiple heteroatoms, show anti-inflammatory, anti-convulsant, anti-inositol and other biological activities. They also served as important intermediates in organic synthesis. Thus, the development of general and straightforward methods for their synthesis is of great significance. In this paper one-step synthesis of non-symmetric 2,5-disubstituted 1,3,4-oxadiazole derivatives with good yield was completed under electrocatalytic conditions by using cheap and readily available aldehydes and hydrazides as starting materials. Their structures were confirmed by IR, 1H NMR, 13C NMR and HRMS analyses. The reaction features mild conditions, high atom-economy and wide substrate scope, providing a green and sustainable synthetic protocol for constructing 1,3,4-oxadiazole skeleton.

Cite this article

Li Mengfan , Wang Rong , Hao Wenjuan , Jiang Bo . Electrocatalytic Synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles[J]. Chinese Journal of Organic Chemistry, 2020 , 40(6) : 1540 -1548 . DOI: 10.6023/cjoc202002029

References

[1] (a) Yan, M.; Kawamata Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
(b) Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J. S.; Xu, H. C. Angew. Chem., Int. Ed. 2016, 55, 9168.
(c) Tang, S.; Liu, Y.; Lei, A. Chem. 2018, 4, 27.
(e) Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Catal. 2018, 8, 7086.
[2] (a) Huang, X.; Zhang, Q.; Lin, J.; Harms, K.; Meggers, E. Nat. Catal. 2019, 2, 34.
(b) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
(c) Yoshida, J. I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
(d) Chen, J.-Y.; Wu, H.-Y.; Gui, Q.-W.; Han, X.-R.; Wu, Y.; Du, K.; Cao, Z.; Lin, Y.-W.; He, W.-M. Org. Lett. 2020, 22, 2206.
[3] (a) Liu, S.; Chen, K.; Hao, W.-J.; Tu, X.-C.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2019, 84, 1964.
(b) Gui, Q.-W.; He, X.; Wang, W.; Zhou, H.; Dong, Y.; Wang, N.; Tang, J.-X.; Cao, Z.; He, W.-M., Green Chem. 2020, 22, 118.
(c) Cao, Z.; Zhu, Q.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2132.
(d) Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2287.
(e) Sun, K.; Li, Y.; Feng, R.; Mu, S.; Wang, X.; Zhang, B. J. Org. Chem. 2020, 85, 1001.
(f) Wang, L.; Zhang, M.; Zhang, Y.; Liu, Q.; Zhao, X.; Li, J.-S.; Luo, Z.; Wei, W. Chin. Chem. Lett. 2020, 31, 67.
[4] (a) Jin, Z. Nat. Prod. Rep. 2003, 20, 584.
(b) Bostrom, J.; Hogner, A.; Llinas, A.; Wellner, E.; Plowright, A. T. J. Med. Chem. 2012, 55, 1817.
[5] (a) Amir, M.; Shikha, K. Eur. J. Med. Chem. 2004, 39, 535.
(b) Cherala, S.; Lingabathula, H.; Ganta, R.; Ampati, S.; Manda, S. J. Chem. 2012, 9, 2510.
(c) Roger, T. W.; Roger, J.; Robert, W. J. Med. Chem. 1991, 34, 2060.
(d) Gilbert, W.; Adelstein, C.; Esam, Z.; Bianchi, R. G. J. Med. Chem. 1976, 19, 1221.
(e) Valente, S.; Trisciuoglio, D.; Luca, T. D.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Bufalo, D. D.; Altucci, L.; Mai, A. J. Med. Chem. 2014, 57, 6259.
(f) Kiselyov, A. S.; Semenova, M. N.; Chernyshova, N. B.; Leitao, A.; Samet, A. V.; Kislyi, K. A.; Raihstat, M. M.; Oprea, T.; Lemcke, H.; Lantow, M.; Weiss, D. G.; Ikizalp, N. N.; Kuznetsov, S. A.; Semenov, V. V. Eur. J. Med. Chem. 2010, 45, 1683.
(g) Jonathan, F. M.; John, P.; Kenneth, R.; John, S. J. Med. Chem. 1995, 38, 3514.
(h) Adelstein, G. W. J. Med. Chem. 1973, 16, 309.
(i) Zheng, X.; Li, Z.; Wang, Y.; Chen, W.; Huang, Q.; Liu, C.; Song, G. J. Fluorine Chem. 2003, 123, 163.
[6] Ogata, M.; Kushida, H.; Yamamoto, K. J. Antibiot. 1971, 24, 443.
[7] Rainer, S. Tetrahedron Lett. 1988, 44, 3289.
[8] Vincenzo, S.; Fabio, B. J. Med. Chem. 2008, 51, 5843.
[9] (a) Dobrotă, C.; Paraschivescu, C. C.; Dumitru, I.; Matache, M.; Baciu, I.; Ruţă, L. L. Tetrahedron Lett. 2009, 50, 1886.
(b) Prabhu, G.; Sureshbabu, V. V. Tetrahedron Lett. 2012, 53, 4232.
(c) Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Bahramnejad, M. Tetrahedron Lett. 2006, 47, 6983.
(d) Gao, P.; Wang, J.; Bai, Z.; Cheng, H.; Xiao, J.; Lai, M.; Yang, D.; Fan, M. Tetrahedron Lett. 2016, 57, 4616.
(e) Jedlovská, E.; Leško, J.; Synth. Commun. 1994, 24, 1879.
(f) Zhang, L.; Zhao, X.; Jing, X.; Zhang, X.; Lü, S.; Luo, L.; Jia, X. Tetrahedron Lett. 2016, 57, 5669.
(g) Majji, G.; Rout, S. K.; Guin, S.; Gogoi, A.; Patel, B. K. RSC Adv. 2014, 4, 5357.
(h) Shang, Z.; Reiner, J.; Chang, J.; Zhao, K. Tetrahedron Lett. 2005, 46, 2701.
(i) Guin, S.; Ghos, T.; Rout, S. K.; Banerjee, A.; Patel, B. K. Org. Lett. 2011, 13, 5976.
(j) Jiang, H. F.; Li, X. W.; Pan, X. Y.; Zhou. P. Pure Appl. Chem. 2012, 84, 553.
(k) Chen, X.; Jia, F. C.; Cai, Q.; Li, D. K.; Zhou, Z. W.; Wu, A. X. Chem. Commun. 2015, 51, 6629.
(l) Yu, W. Q.; Huang, G.; Zhang, Y. T.; Liu, H. X.; Dong, L. H.; Yu, X. J.; Li, Y. J.; Chang, J. B. J. Org. Chem. 2013, 78, 10337.
(m) Niu, P. F.; Kang, J. F.; Tian, X. H.; Song, L. N.; Liu, H, X.; Wu, J.; Yu, W. Q.; Chang. J. B. J. Org. Chem. 2015, 80, 1018.
[10] (a) Jiang, Q.; Qi, X.; Zhang, C.; Ji, X.; Li, J. Liu, R. Org. Chem. Front. 2018, 5, 386.
(b) Guin, S.; Ghosh, T.; Rout, S. K.; Banerjee, A.; Pate. B. K. Org. Lett. 2011, 13, 5976.
[11] Zarudnitskii, E. V.; Pervak, I. I.; Merkulov, A. S.; Yurochenko, A. A. Tetrahedron Lett. 2008, 64, 10431.
[12] Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh T.; Miura, M. Org. Lett. 2009, 11, 3072.
[13] (a) Al-Talib, M.; Tashtoush, H.; Odeh, N. Synth. Commun. 1990, 20, 1811.
(b) Kerr, V. N.; Ott, D. G.; Hayes, F. N. J. Am. Chem. Soc. 1960, 82, 186.
(c) Short, F. W.; Long, L. M. J. Heterocycl. Chem. 1969, 6, 707.
(d) Klingsberg, E. J. Am. Chem. Soc. 1958, 80, 5786.
(e) Reddy, C. K.; Reddy, P. S. N.; Ratnam, C. V. Synthesis. 1983, 842.
(f) Pouliot, M. F.; Angers, L.; Hamel, J. D.; Paquin, J. F. Org. Biomol. Chem. 2012, 10, 988.
[14] (a) Tandon, V. K.; Chhor, R. B. Synth. Commun. 2001, 31, 1727.
(b) Mashraqui, S. H.; Ghadigaonkar, S. G.; Kenny, R. S. Synth. Commun. 2003, 33, 2541.
(c) Bentiss, F.; Lagrenee, M.; Barbry, D. Synth. Commun. 2001, 31, 935.
(d) Kangani, C. O.; Kelley, D. E.; Day, B. W. Tetrahedron Lett. 2006, 47, 6497.
(e) Yadav, Arvind K.; Yadav, Lal Dhar S. Tetrahedron Lett. 2014, 55, 2065.
(f) Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Bahramnejad, M. Tetrahedron Lett. 2006, 47, 6983.
[15] Singh, S.; Sharma, L. K.; Saraswat, A.; Siddiqui, I. R.; Singh, R. K. P. Res. Chem. Intermed. 2014, 40, 947.
[16] (a) Hao, W. J.; Wu, Y. N.; Gao, Q.; Wang, S. L.; Tu, S. J.; Jiang, B. Tetrahedron Lett. 2016, 57, 4767.
(b) Chen, K.; Xu, T.; Liang, J.; Zhou, M.; Zhang, J.; Hao, W. J.; Wang, J. Y.; Tu, S. J.; Jiang, B. Chem. Commun. 2019, 21, 9784.
(c) Zhang, T. S.; Zhang, H. P.; Fu, R.; Wang, J. Y.; Hao, W. J.; Tu, S. J.; Jiang, B. Chem. Commun. 2019, 55, 13231.
(d) Ji, C. L.; Hao, W. J.; Zhang, J.; Geng, F. Z.; Xu, T.; Tu, S. J.; Jiang, B. Org. Lett. 2019, 21, 6494.
(e) Qin, X. Y.; He, L.; Li, J.; Hao, W. J.; Tu, S. J.; Jiang, B. Chem. Commun. 2019, 55, 3227.
[17] (a) Long, H.; Song, J.; Xu, H. Org. Chem. Front. 2018, 5, 3129.
(b) Hou, Z. W.; Yan, H.; Song, J. S.; Xu, H. C. Chin. J. Chem. 2018, 36, 909.
(c) Xiong, P.; Xu, H. C. Acc. Chem. Res. 2019, 52, 3339.
[18] (a) Zhao, Q.; Hao, W. J.; Shi, H. N.; Xu, T.; Tu, S. J.; Jiang, B. Org. Lett. 2019, 21, 9784.
(b) Li, Q.; Li, M.; Shi, S.; Ji, X.; He, C.; Jiang, B.; Hao, W. Chin. J. Org. Chem. 2020, 40, 384(in Chinese). (李庆雪, 李梦伟, 时绍青, 季晓霜, 何春兰, 姜波, 郝文娟, 有机化学, 2020, 40, 384.)
(c) Zhao, Q.; Tu, S. J.; Jiang B. Acta Chim. Sinica 2019, 77, 927(in Chinese). (赵琦, 屠树江, 姜波, 化学学报, 2019, 77, 927.)
(d) Zhang, P.; Shi, H.; Zhang, T.; Cai, P.; Jiang, B.; Tu, S. Chin. J. Org. Chem. 2020, 40, 423(in Chinese). (张萍, 石浩楠, 张天舒, 蔡佩君, 姜波, 屠树江, 有机化学, 2020, 40, 423.)
(e) Tang, N.; Shao, X.; Wang, M.; Wu, X.; Zhu, C. Acta Chim. Sinica 2019, 77, 922(in Chinese). (汤娜娜, 邵鑫, 王明扬, 吴新鑫, 朱晨, 化学学报, 2019, 77, 922.)
Outlines

/