γ-Aluminum Oxide-Mediated Iodination of Terminal Alkynes

  • Yao Ming ,
  • Zhang Jingjing ,
  • Yang Sen ,
  • Xiong Hangxing
Expand
  • a College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000;
    b School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205

Received date: 2020-02-13

  Revised date: 2020-03-27

  Online published: 2020-04-13

Supported by

Project supported by the Science Technology Foundation for Creative Research Group of Hubei Department of Education (No. T201719).

Abstract

A simple two-step, one-pot synthesis of 1,2,2-triiodovinyl derivatives from terminal alkynes using N-iodosuc-cinimide and iodine as precursors, activated with γ-aluminum oxide is developed. This approach resulted in moderate to excellent yields, good functional group tolerance and utilization of an inexpensive catalyst.

Cite this article

Yao Ming , Zhang Jingjing , Yang Sen , Xiong Hangxing . γ-Aluminum Oxide-Mediated Iodination of Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(7) : 2153 -2158 . DOI: 10.6023/cjoc202002014

References

[1] Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
[2] Hernandes, M. Z.; Cavalcanti, S. M. T.; Moreira, D. R. M.; de Azevedo, W. F.; Leite, A. C. L. Curr. Drug Targets 2010, 11, 303.
[3] Tang, M. L.; Bao, Z. Chem. Mater. 2011, 23, 446.
[4] Wilcken, R.; Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M. J. Med. Chem. 2013, 56, 1363.
[5] Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003.
[6] Agarwal, V.; Miles, Z. D.; Winter, J. M.; Eustaquio, A. S.; El Gamal, A. A.; Moore, B. S. Chem. Rev. 2017, 117, 5619.
[7] Lin, R.; Amrute, A. P.; Perez-Ramirez, J. Chem. Rev. 2017, 117, 4182.
[8] Berger, G.; Robeyns, K.; Soubhye, J.; Wintjens, R.; Meyer, F. CrystEngComm 2016, 18, 683.
[9] Yauchi, Y.; Ide, M.; Shiogai, R.; Chikugo, T.; Iwasawa, T. Eur. J. Org. Chem. 2015, 938.
[10] Morisawa, Y.; Konishi, K.; Kataoka, M. US 4487781, 1984.
[11] Sriramoju, V.; Jillella, R.; Kurva, S.; Madabhushi, S. Chem. Lett. 2017, 46, 560.
[12] Liu, Y.; Huang, D.; Huang, J.; Maruoka, K. J. Org. Chem. 2017, 82, 11865.
[13] Rather, S. A.; Kumar, A.; Ahmed, Q. N. Chem. Commun. 2019, 55, 4511.
[14] Smith, K. Solids Supports and Catalysts in Organic Synthesis, Ellis Horwood, Chichester, UK, 1992.
[15] Busca, G. Heterogeneous Catalytic Materials:Solid State Chemistry, Surface Chemistry and Catalytic Behavior, Elsevier, Amsterdam, 2014.
[16] Pines, H.; Haag, W. O. J. Am. Chem. Soc. 1960, 82, 2471.
[17] Corado, A.; Kiss, A.; Knozinger, H.; Muller, H. D. J. Catal. 1975, 37, 68.
[18] Quici, S.; Regen, S. L. J. Org. Chem. 1979, 44, 3436.
[19] Pannell, K. H.; Mayr, A. J. J. Chem. Soc., Perkin Trans. 1 1982, 2153.
[20] Tundo, P.; Venturello, P.; Angeletti, E. J. Chem. Soc., Perkin Trans. 2 1983, 485.
[21] Boothe, R.; Dial, C.; Conaway, R.; Pagni, R. N.; Kabalka, G. W. Tetrahedron Lett. 1986, 27, 2207.
[22] Pagni, M. R.; Kaballaka, G. W.; Boothe, R.; Gaetano, K.; Stewart, L. J. Stud. Org. Chem. (Amsterdam) 1987, 31, 399.
[23] Kodomari, M.; Takahshi, S.; Yoshitomi, S. Chem. Lett. 1987, 1901.
[24] Kodomari, M.; Takahshi, S.; Yoshitomi, S. J. Org. Chem. 1988, 53, 2093.
[25] Kodomari, M.; Takahshi, S.; Yoshitomi, S. Bull. Chem. Soc. Jpn. 1988, 61, 4149.
[26] Binns, S.; Green, J.; Tan, L. C.; Pangi, R. M.; Kabalka, G. W. J. Org. Chem. 1992, 57, 7475.
[27] Ranu, B. C.; Sarkar, D. C.; Dispak, C.; Chakraborty, R. Synth. Commun. 1992, 22, 1095.
[28] Singh, P. K.; Khanna, R. N. Synth. Commun. 1993, 23, 2083.
[29] Stavber, S.; Jereb, M.; Zupan, M. Synthesis 2008, 1487.
[30] Larson, S.; Luidhardt, T.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1988, 29, 35.
[31] Hondrogiannis, G.; Lee, L. C.; Abalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1989, 30, 2069.
[32] Yao, M.; Zhang, J.; Yang, S.; Xiong, H.; Li, L.; Liu, E.; Shi, H. RSC Adv. 2020, 10, 3946.
[33] Chen, S.; Zhang, X.; Zhao, H.; Guo, X.; Hu, X. Chin. J. Org. Chem. 2018, 38, 1172(in Chinese). (陈锁, 章晓炜, 赵辉, 郭晓红, 胡祥国, 有机化学, 2018, 38, 1172.)
Outlines

/