Advances in Multicomponent Asymmetric Cascade Synthesis Involving Hydrogen-Bond-Activated Nitroolefins

  • Yan Lijun ,
  • Yan Yuxin ,
  • Chen Xuebing ,
  • Wang Yongchao
Expand
  • a College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092;
    b School of Science, Honghe University, Mengzi, Yunnan 6611992

Received date: 2019-10-31

  Revised date: 2019-12-02

  Online published: 2020-05-06

Supported by

Project supported by the Applied Basic Research Project Foundation of Yunnan Provincial Department of Science and Technology (Nos. 2018FD016, 2017FD073, 2017FD156).

Abstract

Organocatalytic multicomponent asymmetric cascade reaction is generally regarded as one of the most effective methods for constructing complex chiral compounds. Bifunctional chiral catalysts are an important class of single-molecule double-activated organic catalysts, which can simultaneously activate hydrogen bonds of multiple reactive substrates to achieve the formation of multiple new bonds and stereoselective control of multiple chiral centers. Nitroolefins are important organic reaction synthons, which can participate in a variety of asymmetric cascade reactions by hydrogen bond activation. In this paper, the recent advances in nitroolefins-involved multicomponent asymmetric cascade reactions catalyzed by bifunctional organocatalysts involving chiral bifunctional thiourea amines, squaramide amines and other bifunctional catalysts are reviewed. Specifically, the catalytic systems, characteristics, mechanisms are systematically expounded, and the application of this research field is also prospected.

Cite this article

Yan Lijun , Yan Yuxin , Chen Xuebing , Wang Yongchao . Advances in Multicomponent Asymmetric Cascade Synthesis Involving Hydrogen-Bond-Activated Nitroolefins[J]. Chinese Journal of Organic Chemistry, 2020 , 40(4) : 856 -872 . DOI: 10.6023/cjoc201910039

References

[1] For some typical references in this area, see:(a) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2013, 114, 2390.
(b) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253.
(c) Yan, L. J., Wang, Y. C. ChemistrySelect 2016, 1, 6948.
(d) Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Zhang, F.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 9124.
(e) Li, X.; Guo, L.; Peng, C.; Han, B. Chem. Rec. 2019, 19, 394.
(f) Vinogradov, M. G.; Turova, O. V.; Zlotin, S. G. Org. Biomol. Chem. 2019, 17, 3670.
(g) Wu, X.; Li, M. L.; Gong, L. Z. Acta Chim. Sinica 2013, 71, 1091(in Chinese). (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.)
(h) Han, Z. Y.; Gong, L. Z. Prog. Chem. 2018, 30, 505(in Chinese). (韩志勇, 龚流柱, 化学进展, 2018, 30, 505.)
[2] (a) Shibasaki, M.; Matsunaga, S. Chem. Soc. Rev. 2006, 35, 269.
(b) Georgiou, I.; Ilyashenko, G.; Whiting, A. Acc. Chem. Res. 2009, 42, 756.
(c) Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2011, 133, 16711.
(d) Xiao, Y. C.; Chen, F. E. ChemCatChem 2019, 11, 2018.
(e) Yu, X.; Wang, W. Chem.-Asian J. 2008, 3, 516.
(f) Held, F. E.; Tsogoeva, S. B. Catal. Sci. Technol. 2016, 6, 645.
(g) Du, L.; Peng, C.; Liao, J. Acta Chim. Sinica 2013, 71, 1239(in Chinese). (杜乐, 曹鹏, 廖建, 化学学报, 2013, 71, 1239.)
[3] Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417.
[4] Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
[5] For some typical references in this area, see:(a) Zhan, G.; Du, W.; Chen, Y. C. Chem. Soc. Rev. 2017, 46, 1675.
(b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
(c) Liu, J. Y.; Zhao, J.; Zhang, J. L.; Xu, P. F. Org. Lett. 2017, 19, 1846.
(d) Shirakawa, S.; Koga, K.; Tokuda, T.; Yamamoto, K.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 6220.
(e) Chen, P.; Bao, X.; Zhang, L. F.; Ding, M.; Han, X. J.; Li, J.; Zhang, B. B.; Tu, Y. Q.; Fan, C. A. Angew. Chem., Int. Ed. 2011, 50, 8161.
(f) Miyamura, H.; Choo, G. C.; Yasukawa, T.; Yoo, W. J.; Kobayashi, S. Chem. Commun. 2013, 49, 9917.
[6] (a) Barrett, A. G.; Graboski, G. G. Chem. Rev. 1986, 86, 751.
(b) Zimmer, R.; Reissig, H. U. Chem. Soc. Rev. 2014, 43, 2888.
(c) Feng, J.; Li, X. J. Org. Chem. 2017, 82, 7317.
(d) Gao, W.; Lv, H.; Zhang, T.; Yang, Y.; Chung, L. W.; Wu, Y. D.; Zhang, X. Chem. Sci. 2017, 8, 6419.
(e) Zhang, W. S.; Xu, W. J.; Zhang, F.; Li, Y. Chin. J. Org. Chem. 2019, 39, 1277(in Chinese). (张文生, 许文静, 张斐, 李焱, 有机化学, 2019, 39, 1277.)
(f) Yan, L. J.; Xu, H.; Wang, Y.; Dong, J. W.; Wang, Y. C. Chin. J. Org. Chem. 2020, 40, 284(in Chinese). (严丽君, 徐菡, 王艳, 董建伟, 王永超, 有机化学, 2020, 40, 284.)
[7] Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.
[8] (a) Pei, Z.; Li, X.; von Geldern, T. W.; Longenecker, K.; Pireh, D.; Stewart, K. D.; Backes, B. J.; Lai, C.; Lubben, T. H.; Ballaron, S. J.; Beno, D. W. A.; Kempf-Grote, A. J.; Sham, H. L.; Trevillyan, J. M. J. Med. Chem. 2007, 50, 1983.
(b) Nara, S.; Tanaka, R.; Eishima, J.; Hara, M.; Takahashi, Y.; Otaki, S.; Foglesong, R. J.; Hughes, P. F.; Turkington, S.; Kanada, Y. J. Med. Chem. 2003, 46, 2467.
[9] Imashiro, R.; Uehara, H.; Barbas III, C. F. Org. Lett. 2010, 12, 5250.
[10] Uehara, H.; Imashiro, R.; Hernández-Torres, G.; Barbas III, C. F. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20672.
[11] Basle, O.; Raimondi, W.; Duque, M. D. M. S.; Bonne, D.; Constantieux, T.; Rodriguez, J. Org. Lett. 2010, 12, 5246.
[12] Wang, Y.; Han, R. G.; Zhao, Y. L.; Yang, S.; Xu, P. F.; Dixon, D. J. Angew. Chem., Int. Ed. 2009, 48, 9834.
[13] Mao, Z.; Jia, Y.; Xu, Z.; Wang, R. Adv. Synth. Catal. 2012, 354, 1401.
[14] For recent reviews, see:(a) Robinson, D. E. J. E.; Bull, S. D. Tetrahedron:Asymmetry 2003, 14, 1407.
(b) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.
(c) Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40, 284.
(d) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
[15] Roy, S.; Chen, K. Org. Lett. 2012, 14, 2496.
[16] Zhou, B.; Yang, Y.; Shi, J.; Luo, Z.; Li, Y. J. Org. Chem. 2013, 78, 2897.
[17] For some typical references in this area, see:(a) Pearson, W. H.; Hines, J. V. J. Org. Chem. 1989, 54, 4235.
(b) Kingston, D. G.; Samranayake, G.; Ivey, C. A. J. Nat. Prod. 1990, 3, 1.
(c) Slade, J.; Stanton, J. L.; Ben-David, D.; Mazzenga, G. C. J. Med. Chem. 1985, 28, 1517.
(d) Le, V.; Inai, M.; Williams, R.; Kan, T. Nat. Prod. Rep. 2015, 32, 328.
(e) Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.; Zhang, X. Angew. Chem., Int. Ed. 2011, 50, 7304.
(f) Wang, Q.; Huang, W.; Yuan, H.; Cai, Q.; Chen, L.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 16120.
[18] Hou, W.; Wei, Q.; Liu, G.; Chen, J.; Guo, J.; Peng, Y. Org. Lett. 2015, 17, 4870.
[19] Hou, W.; Wei, Q.; Peng, Y. Adv. Synth. Catal. 2016, 358, 1035.
[20] (a) Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.
(b) Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, 104, 1.
[21] For some recent reviews, see:(a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 2, 422.
(b) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 2, 826.
(c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[22] Huang, X.; Liu, M.; Jasinski, J. P.; Peng, B.; Zhang, W. Adv. Synth. Catal. 2017, 359, 1919.
[23] Wang, Y.; Yu, D. F.; Liu, Y. Z.; Wei, H.; Luo, Y. C.; Dixon, D. J.; Xu, P. F. Chem.-Eur. J. 2010, 16, 3922.
[24] Enders, D.; Urbanietz, G.; Cassens-Sasse, E.; Keess, S.; Raabe, G. Adv. Synth. Catal. 2012, 354, 1481.
[25] Wu, M. Y.; He, W. W.; Liu, X. Y.; Tan, B. Angew. Chem., Int. Ed. 2015, 54, 9409.
[26] Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.
[27] (a) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406.
(b) Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Science 2017, 358, 761.
(c) Deng, Y. H.; Zhang, X. Z.; Yu, K. Y.; Yan, X.; Du, J. Y.; Huang, H.; Fan, C. A. Chem. Commun. 2016, 52, 4183.
(d) Bae, H. Y.; Song, C. E. ACS Catal. 2015, 5, 3613.
(e) Kasaplar, P.; Riente, P.; Hartmann, C.; Pericàs, M. A. Adv. Synth. Catal. 2012, 354, 2905.
[28] (a) Didaskalou, C.; Kupai, J.; Cseri, L.; Barabas, J.; Vass, E.; Holtzl, T.; Szekely, G. ACS Catal. 2018, 8, 7430.
(b) Kucherenko, A. S.; Kostenko, A. A.; Komogortsev, A. N.; Lichitsky, B. V.; Fedotov, M. Y.; Zlotin, S. G. J. Org. Chem. 2019, 84, 4304.
(c) Liu, K.; Khan, I.; Cheng, J.; Hsueh, Y. J.; Zhang, Y. J. ACS Catal. 2018, 8, 11600.
(d) Vural, U.; Durmaz, M.; Sirit, A. Org. Chem. Front. 2016, 3, 730.
(e)Yang, W.; Du, D. M. Org. Lett. 2010, 12, 5450.
[29] For some selected reports and recent reviews, see:(a) Shi, F.; Tao, Z. L.; Luo, S. W.; Tu, S. J.; Gong, L. Z. Chem.-Eur. J. 2012, 18, 6885.
(b) Xi, N.; Arvedson, S.; Eisenberg, S.; Han, N.; Handley, M.; Huang, L.; Huang, Q.; Kiselyov, A.; Liu, Q.; Lu, Y.; Nunez, G.; Osslund, T.; Powers, D.; Tasker, A. S.; Wang, L.; Xiang, T.; Xu, S.; Zhang, J.; Zhu, J.; Kendall, R.; Dominguez, C. Bioorg. Med. Chem. Lett. 2004, 14, 2905.
(c) Periyasami, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Bioorg. Med. Chem. Lett. 2008, 18, 2342.
(d) Girgis, A. S. Eur. J. Med. Chem. 2009, 44, 91.
(e) Ali, M. A.; Ismail, R.; Choon, T. S.; Yoon, Y. K.; Wei, A. C.; Pandian, S.; Kumar, R. S.; Osman, H.; Manogaran, E. Bioorg. Med. Chem. Lett. 2010, 20, 7064.
(f) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023.
(g) Tian, L.; Luo, Y. C.; Hu, X. Q.; Xu, P. F. Asian J. Org. Chem. 2016, 5, 580.
(h) Mei, G. J.; Shi, F. Chem. Commun. 2018, 54, 6607.
(i) Fang, X.; Wang, C. J. Org. Biomol. Chem. 2018, 16, 2591.
(j) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas III, C. F. ACS Catal. 2014, 4, 743.
(k) Wang, Y. C.; Wang, J. L.; Burgess, K. S.; Zhang, J. W.; Zheng, Q. M.; Pu, Y. D.; Yan, L. J.; Chen, X. B. RSC Adv. 2018, 8, 5702.
(l) Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147(in Chinese). (张丹, 秦勇, 化学学报, 2013, 71, 147.)
(m) Zhang, L. L.; Zhang, J. W.; Xiang, S. H.; Guo, Z.; Tan, B. Org. Lett. 2018, 20, 6022.
(n) Zhang, L. L.; Zhang, J. W.; Xiang, S. H.; Guo, Z.; Tan, B. Chin. J. Chem. 2018, 36, 1182.
[30] Tian, L.; Hu, X. Q.; Li, Y. H.; Xu, P. F. Chem. Commun. 2013, 49, 7213.
[31] Chen, D. F.; Zhao, F.; Hu, Y.; Gong, L. Z. Angew. Chem., Int. Ed. 2014, 53, 10763.
[32] (a) Eschenbrenner-Lux, V.; Küchler, P.; Ziegler, S.; Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2014, 53, 2134.
(b) Mengozzi, L.; Gualandi, A.; Cozzi, P. G. Chem. Sci. 2014, 5, 3915.
(c) Khashper, A.; Lubell, W. D. Org. Biomol. Chem. 2014, 12, 5052.
(d) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10775.
(e) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149.
[33] Blümel, M.; Chauhan, P.; Hahn, R.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 6012.
[34] Blüemel, M.; Chauhan, P.; Vermeeren, C.; Dreier, A.; Lehmann, C.; Enders, D. Synthesis 2015, 47, 3618.
[35] For recent reviews on the synthesis of tetrahydropyrans, see:(a) Yeung, K. S.; Paterson, I. Chem. Rev. 2005, 105, 4237.
(b) Nising, C. F.; Braese, S. Chem. Soc. Rev. 2012, 41, 988.
(c) Larrosa, I.; Romea, P.; Urpí. F. Tetrahedron 2008, 64, 2683.
[36] Hahn, R.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 3636.
[37] Chauhan, P.; Mahajan, S.; Loh, C. C.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 2954.
[38] Chauhan, P.; Urbanietz, G.; Raabe, G.; Enders, D. Chem. Commun. 2014, 50, 6853.
[39] Chauhan, P.; Mahajan, S.; Raabe, G.; Enders, D. Chem. Commun. 2015, 51, 2270.
[40] Sun, Q. S.; Chen, X. Y.; Zhu, H.; Lin, H.; Sun, X. W.; Lin, G. Q. Org. Chem. Front. 2015, 2, 110.
[41] Sun, Q. S.; Zhu, H.; Lin, H.; Tan, Y.; Yang, X. D.; Sun, X. W.; Sun, X. Tetrahedron Lett. 2016, 57, 5768.
[42] For some typical references in this area, see:(a) Yang, J.; Liu, G. Y.; Lu, D. L.; Dai, F.; Qian, Y. P.; Jin, X. L.; Zhou, B. Chem.-Eur. J. 2010, 16, 12808.
(b) Koufaki, M.; Theodorou, E.; Galaris, D.; Nousis, L.; Katsanou, E. S.; Alexis, M. N. J. Med. Chem. 2006, 49, 300.
(c) Koufaki, M.; Detsi, A.; Theodorou, E.; Kiziridi, C.; Calogeropoulou, T.; Vassilopoulos, A.; Kourounakis, A. P.; Rekka, E.; Kourounakis, P. N.; Gaitanaki, C.; Papazafiri, P. Bioorg. Med. Chem. 2004, 12, 4835.
(d) Reddy, K. A.; Lohray, B. B.; Bhushan, V.; Reddy, A. S.; Mamidi, N. V. S. R.; Reddy, P. P.; Saibaba, V.; Reddy, N. J.; Suryaprakash, A.; Misra, P.; Vikramadithyan, R. K.; Rajagopalan, R. J. Med. Chem. 1999, 42, 3265.
[43] Xiao, Y.; Lin, J. B.; Zhao, Y. N.; Liu, J. Y.; Xu, P. F. Org. Lett. 2016, 18, 6276.
[44] (a) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247.
(b) Zhang, J.; Qian, Z.; Wu, X.; Ding, Y.; Li, J.; Lu, C.; Shen, Y. Org. Lett. 2014, 16, 2752.
(c) Zhou, F.; Liu, Y. L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
(d) Ziarani, G. M.; Moradi, R.; Lashgari, N. Tetrahedron:Asymmetry 2015, 26, 517.
(e) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
(f) Shen, K.; Liu, X.; Lin, L.; Feng, X. Chem. Sci. 2012, 3, 327.
[45] Lian, X. L.; Meng, J.; Han, Z. Y. Org. Lett. 2016, 18, 4270.
[46] Urruzuno, I.; Mugica, O.; Oiarbide, M.; Palomo, C. Angew. Chem., Int. Ed. 2017, 56, 2059.
[47] (a) Hamama, W. S.; El-Gohary, H. G.; Kuhnert, N; Zoorob, H. H. Curr. Org. Chem. 2012, 16, 373.
(b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
(c) Yoshida, H.; Yanai, H.; Namiki, Y.; Fukatsu-Sasaki, K.; Furutani, N.; Tada, N. CNS Drug Rev. 2006, 12, 9.
(d) Hadi, V.; Koh, Y. H.; Sanchez, T. W.; Barrios, D.; Neamati, N.; Jung, K. W. Bioorg. Med. Chem. Lett. 2010, 20, 6854.
(e) Chande, M. S.; Barve, P. A.; Suryanarayan, V. J. Heterocycl. Chem. 2007, 44, 49.
[48] Li, J. H.; Cui, Z. H.; Du, D. M. Org. Chem. Front. 2016, 3, 1087.
[49] (a) Wang, T.; Yu, Z.; Hoon, D. L.; Huang, K. W.; Lan, Y.; Lu, Y. Chem. Sci. 2015, 6, 4912.
(b) Ibrahim, D. A. Eur. J. Med. Chem. 2009, 44, 2776.
(c) Abdel-Wahab, B. F.; Abdel-Latif, E.; Mohamed, H. A.; Awad, G. E. Eur. J. Med. Chem. 2012, 52, 263.
(d) Bayomi, S. M.; El-Kashef, H. A.; El-Ashmawy, M. B.; Nasr, M. N.; El-Sherbeny, M. A.; Abdel-Aziz, N. I.; El-Sayed, M. A. A.; Suddek, G. M.; El-Messery, S. M.; Ghaly, M. A. Eur. J. Med. Chem. 2015, 101, 584.
(e) Ding, C. R.; Pan, Y. Y.; Yin, X.; Tan, C. X. Chin. J. Org. Chem. 2019, 39, 2099(in Chinese). (丁成荣, 潘亚运, 殷许, 谭成侠, 有机化学, 2019, 39, 2099.)
[50] Xiao, Y.; Jiang, R.; Wang, Y.; Zhou, Z. Adv. Synth. Catal. 2018, 360, 1961.
[51] For some typical references in this area, see:(a) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chem. Soc. Rev. 2018, 47, 1142.
(b) Zhang, Y. L.; He, B. J.; Xie, Y. W.; Wang, Y. H.; Wang, Y. L.; Shen, Y. C.; Huang, Y. Y. Adv. Synth. Catal. 2019, 361, 3074.
(c) Kang, Q.; Zhao, Z. A.; You, S. L. J. Am. Chem. Soc. 2007, 129, 1484.
(d) Wang, S. G.; Yin, Q.; Zhuo, C. X.; You, S. L. Angew. Chem., Int. Ed. 2015, 54, 647.
(e) Yin, Q.; Wang, S. G.; You, S. L. Org. Lett. 2013, 15, 2688.
(f) Zhang, K. F.; Nie, J.; Guo, R.; Zheng, Y.; Ma, J. A. Adv. Synth. Catal. 2013, 355, 3497.
(g) Zhang, Y.; Ao, Y. F.; Huang, Z. T.; Wang, D. X.; Wang, M. X.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 5282.
(h) Smith, M. J.; Reichl, K. D.; Escobar, R. A.; Heavey, T. J.; Coker, D. F.; Schaus, S. E.; Porco Jr, J. A. J. Am. Chem. Soc. 2018, 141, 148.
[52] (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
(b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
(c) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804.
[53] (a) Wang, Y. B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
(b) Xia, Z. L.; Zheng, C.; Xu, R. Q.; You, S. L. Nat. commun. 2019, 10, 3150.
(c) Zhang, L.; Xiang, S. H.; Wang, J. J.; Xiao, J.; Wang, J. Q.; Tan, B. Nat. Commun. 2019, 10, 566.
(d) Li, J. S.; Liu, Y. J.; Li, S.; Ma, J. A. Chem. Commun. 2018, 54, 9151.
(e) Su, Y. J.; Shi, F. Q. Chin. J. Org. Chem. 2010, 30, 486(in Chinese). (苏亚军, 史福强, 有机化学, 2010, 30, 486.)
[54] Zhu, G.; Wang, B.; Bao, X.; Zhang, H.; Wei, Q.; Qu, J. Chem. Commun. 2015, 51, 15510.
[55] Wu, S.; Zhu, G.; Wei, S.; Chen, H.; Qu, J.; Wang, B. Org. Biomol. Chem. 2018, 16, 807.
[56] For some recent reviews, see:(a) Si, Y.; Chen, M.; Wu, L. Chem. Soc. Rev. 2016, 45, 690.
(b) Qi, J.; Lai, X.; Wang, J.; Tang, H.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L.; Yu, R.; Ma, G.; Su, Z.; Zhao, H.; Wang, D. Chem. Soc. Rev. 2015, 44, 6749.
(c) Chen, Y.; Chen, H. R.; Shi, J. L. Acc. Chem. Res. 2014, 47, 125.
(d) Sasidharan, M.; Nakashima, K. Acc. Chem. Res. 2014, 47, 157.
[57] Dai, F.; Zhao, Z.; Xie, G.; Feng, D.; Ma, X. ChemCatChem 2017, 9, 89.
[58] (a) Lu, A.; Liu, T.; Wu, R.; Wang, Y.; Zhou, Z.; Wu, G.; Fang, J.; Tang, C. Eur. J. Org. Chem. 2010, 5777.
(b) Lu, A.; Liu, T.; Wu, R.; Wang, Y.; Wu, G.; Zhou, Z.; Fang, J.; Tang, C. J. Org. Chem. 2011, 76, 3872.
[59] Sun, J.; Jiang, C.; Zhou, Z. Eur. J. Org. Chem. 2016, 2016, 1165.
[60] (a) Dong, S.; Feng, X.; Liu, X. Chem. Soc. Rev. 2018, 47, 8525.
(b) Xie, L.; Dong, S.; Zhang, Q.; Feng, X.; Liu, X. Chem. Commun. 2018, 55, 87.
(c) Kang, T.; Zhao, P.; Yang, J.; Lin, L.; Feng, X.; Liu, X. Chem.-Eur. J. 2018, 24, 3703.
(d) Cui, X. Y.; Tan, C. H.; Leow, D. Org. Biomol. Chem. 2019, 17, 4689.
[61] Chen, Y.; Liu, X.; Luo, W.; Lin, L.; Feng, X. Synlett 2017, 28, 966.
Outlines

/