Cu-Catalyzed Direct Arylation of Benzothiazoles with Diaryliodonium Salts

  • Li Huaigui ,
  • Yang Peng ,
  • Xu Zheng ,
  • Du Zhengyin ,
  • Fu Ying
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Received date: 2020-02-29

  Revised date: 2020-05-10

  Online published: 2020-05-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21262028, 21762039, 21762040).

Abstract

Diaryliodonium salts have low toxicity and good stability, and their mediated reactions often have advantages of mild reaction conditions and high selectivity. They have received extensive attention and have been widely used as arylating agents in organic synthesis. A simple and efficient method for the synthesis of 2-arylbenzothiazole derivatives via copper-catalyzed C-H direct arylation of benzothiazoles with diaryliodonium salts as electrophilic arylating reagents was developed. This method shows wide range of substrates, good group tolerance, simple operation and high product yields.

Cite this article

Li Huaigui , Yang Peng , Xu Zheng , Du Zhengyin , Fu Ying . Cu-Catalyzed Direct Arylation of Benzothiazoles with Diaryliodonium Salts[J]. Chinese Journal of Organic Chemistry, 2020 , 40(8) : 2476 -2482 . DOI: 10.6023/cjoc202002042

References

[1] Matysiak, J.; Skrzypek, A.; Głaszcz, U.; Matwijczuk, A.; Senczyna, B.; Wietrzyk, J.; Krajewska-Kułak, E.; Niewiadomy, A. Res. Chem. Intermed. 2018, 44, 6169.
[2] Choi, S.; Park, H.; Lee, S.; Kim, S.; Hanc G.; Choo, H. Bioorg. Med. Chem. 2006, 14, 1229.
[3] Guo, H.; Li, J.; Shang, Y. Chin. Chem. Lett. 2009, 20, 1408.
[4] Benazzouz, A.; Boraud, T.; Dubédat, P.; Boireau, A.; Stutzmann, J.; Gross, C. Eur. J. Pharmacol. 1995, 284, 299.
[5] Bheeter, C. B.; Chen, L.; Soulé, J.-F.; Doucet, H. Catal. Sci. Technol. 2016, 6, 2005.
[6] (a) Hu, R.; Li, X.; Tong, Y.; Miao, D.; Pan, Q.; Jiang, Z.; Gan, H.; Han, S. Synlett 2016, 27, 1387.
(b) Yuen, O. Y.; So, C. M.; Wong, W. T.; Kwong, F. Y. Synlett 2013, 1549.
(c) Nagao, I.; Ishizaka T.; Kawanami, H. Green Chem. 2016, 18, 3494.
[7] (a) Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.; Wu, L.; Lei, A. J. Am. Chem. Soc. 2015, 137, 9273.
(b) Inamoto, K.; Nozawa, K.; Kondo, Y. Synlett 2012, 1678.
(c) Inamoto, K.; Hasegawa, C.; Kawasaki, J.; Hiroya, K.; Dohi, T. Adv. Synth. Catal. 2010, 352, 2643.
(d) Urzua, J. I.; Contreras, R.; Salas, C. O.; Tapia, R. A. RSC Adv. 2016, 6, 82401.
(e) Wang, P.; Tang, S. Green Chem. 2017, 19, 2092.
(f) Xu, Z.; Li, H.; Li, D. H.; Lang. J. Org. Lett. 2019, 21, 237.
[8] (a) Huang, C.; Wu, J.; Song, C.; Ding, R.; Qiao, Y.; Hou, H.; Chang, J.; Fan, Y. Chem. Commun. 2015, 51, 10353.
(b) Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.; Itami, K. Angew. Chem., Int. Ed. 2011, 50, 2387.
(c) Zhang, F.; Greaney. M. Angew. Chem., Int. Ed. 2010, 49, 2768.
(d) Khake, S. M.; Soni, V.; Gonnade, B. R.; Punji, B. Dalton Trans. 2014, 43, 16084.
(e) Yang, J. Tetrahedron 2019, 75, 2182.
(f) Liu, C.; Yang, F. Chin. J. Chem. 2016, 34, 1213.
(g) Feng, J.; Li, B.; Jiang, J. Chin. J. Chem. 2018, 36, 11.
[9] (a) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656.
(b) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052.
[10] (a) Wirth, T. Angew. Chem., Int Ed. 2001, 40, 2812.
(b) Cai, Q.; Ma, H. Acta Chim. Sinica 2019, 77, 213(in Chinese). (蔡倩, 马浩文, 化学学报, 2019, 77, 213.)
(c) Wang, M.; Jiang, X. Acta Chim. Sinica 2018, 76, 377(in Chinese). (王明, 姜雪峰, 化学学报, 2018, 76, 377.)
[11] Kalyani, D.; Deprez, N. R.; Desai, N. R.; Sanford, L. V.; Kalyani, D.; Deprez, N. R.; Desai, L.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330.
[12] Wu, X.; Yang, Y.; Han, J.; Wang, L. Org. Lett. 2015, 17, 5654.
[13] Suero, M. G.; Bayle, E. D.; Collins, B. L.; Gaunt, M. J. Am. Chem. Soc. 2013, 135, 5332.
[14] Margraf, N.; Manolikakes, G. J. Org. Chem. 2015, 80, 2582.
[15] Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605.
[16] Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.
[17] Qian, X.; Han, J.; Wang, L. Tetrahedron Lett. 2016, 57, 607.
[18] Zhu, D.; Liu, P.; Lu, W.; Wang, H.; Luo, B.; Hu, Y.; Huang, P.; Wen, S. Chem.-Eur. J. 2015, 21, 18915.
[19] Yang, P.; Wang, R.; Wu, H.; Du, Z.; Fu, Y. Asian J. Org. Chem. 2017, 6, 184.
[20] Gang, F.; Che, Y.; Du, Z.; Feng, H.; Fu, Y. Synlett 2017, 28, 1624.
[21] (a) Zhang, W.; Dong, T.; Wang, T.; Du, Z. J. Liaocheng Univ. (Nat. Sci. Ed.) 2019, 32, 35(in Chinese). (张文莹, 董涛生, 王天昀, 杜正银, 聊城大学学报(自然科学版), 2019, 32, 35.)
(b) Hu, B.; Zhang, Y.; Wang, T.; Du, Z. J. Liaocheng Univ. (Nat. Sci. Ed.) 2020, 33, 67(in Chinese). (胡贝, 张源民, 王天昀, 杜正银, 聊城大学学报(自然科学版), 2020, 33, 67.)
(c) Gang, F.; Xu, G.; Dong, T.; Yang, L.; Du, Z. Chin. J. Org. Chem. 2015, 35, 1428(in Chinese). (刚芳莉, 徐光利, 董涛生, 杨丽, 杜正银, 有机化学, 2015, 35, 1428.)
[22] (a) Kumar, D.; Pilania, M.; Arun, V.; Pooniya, S. Org. Biomol. Chem. 2014, 12, 6340.
(b) Zhou, B.; Hou, W.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 1322.
[23] Deng, H.; Li, Z.; Ke, F.; Zhou, X. Chem.-Eur. J. 2012, 18, 4840.
[24] Yang, Z.; Chen, X.; Wang, S.; Liu, J.; Xie, K.; Wang, A.; Tan, Z. J. Org. Chem. 2012, 77, 7086.
[25] Duan, Z.; Ranjit, S.; Liu, X. Org. Lett. 2010, 12, 2430.
[26] Song, Q.; Feng, Q.; Zhou, M. Org. Lett. 2013, 15, 5990.
[27] Pratap, U. R.; Mali, J. R.; Jawale, D. W.; Mane, R. A. Tetrahedron Lett. 2009, 50, 1352.
[28] Prasad, D.; Sekar, G. Org. Lett. 2011, 13, 1008.
[29] Inamoto, K.; Hasegawa, C.; Hiroya, K.; Doi, T. Org. Lett. 2008, 10, 5147.
[30] Alla, S. K.; Sadhu, P.; Punniyamurthy, T. J. Org. Chem. 2014, 79, 7502.
[31] Liu, S.; Chen, R.; Guo, X.; Yang, H.; Deng, G.; Li. C. Green Chem. 2012, 14, 1577.
[32] Auld, D. S.; Zhang, Y. Q.; Southal, N. T.; Rai, G.; Landsman, M.; MacLure, D.; Langevin, C. J.; Thomas, C. P.; Inglese, J. J. Med. Chem. 2009, 52, 1450.
[33] Weekes. A. A.; Bagley, M. C.; Westwell, A. D. Tetrahedron 2011, 67, 7743.
[34] Sayama, S. Heterocycles 2011, 83, 1267.
Outlines

/