Advances in Asymmetric Organotransition Metal-Catalyzed Electrochemistry

  • Wang Xiangyang ,
  • Xu Xuetao ,
  • Wang Zhenhua ,
  • Fang Ping ,
  • Mei Tiansheng
Expand
  • a School of Biotechnology and Health Science, Wuyi University, Jiangmen, Guangzhou 529020;
    b State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2020-03-09

  Revised date: 2020-05-24

  Online published: 2020-05-28

Supported by

Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the National Natural Science Foundation of China (Nos. 91956112, 21572245, 21772222, 21772220), and the Program of Shanghai Science and Technology Committee of Shanghai (Nos. 17JC1401200, 18JC1415600).

Abstract

The recent developments in asymmetric organotransition metal-catalyzed electrochemistry (AOMCE) are summarized. AOMCE processes can be divided into oxidative and reductive variants. In terms of oxidations, asymmetric functionalization of olefins, oxidative kinetic resolution of secondary alcohols or aldehydes, and asymmetric C—H functionalization reactions have been developed. Reductive processes discussed include asymmetric electrochemical carboxylation with carbon dioxide, asymmetric electrochemical decarboxylation, and asymmetric reductive coupling reactions. The combination of chiral ligands, transition-metal catalysts, and electrochemistry provides a novel angle by which to address the longstanding fundamental challenge of stereoinduction in traditional electrochemical organic synthesis.

Cite this article

Wang Xiangyang , Xu Xuetao , Wang Zhenhua , Fang Ping , Mei Tiansheng . Advances in Asymmetric Organotransition Metal-Catalyzed Electrochemistry[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3738 -3747 . DOI: 10.6023/cjoc202003022

References

[1] Kolbe, H. J. Prakt. Chem. 1847, 41, 137.
[2] Baizer, M. M. J. Electrochem. Soc. 1964, 111, 215.
[3] (a) Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561.
(b) Siu, J. C.; Fu, N.; Lin, S. Acc. Chem. Res. 2020, 53, 547.
(c) Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322.
(d) Flexer, V.; Jourdin, L. Acc. Chem. Res. 2020, 53, 311.
(e) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
(f) Robinson, S.; Sigman, M. S. Acc. Chem. Res. 2020, 53, 289.
(g) Jing, Q.; Moeller, K. D. Acc. Chem. Res. 2020, 53, 135.
(h) Leech, M. C.; Lam, K. Acc. Chem. Res. 2020, 53, 121.
(i) Yamamoto, K.; Kuriyama, M.; Onomura, O. Acc. Chem. Res. 2020, 53, 105.
(j) Ackermann, L. Acc. Chem. Res. 2020, 53, 84.
(k) Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. Acc. Chem. Soc. 2020, 53, 72.
(l) Röckl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45.
(m) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
(n) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
(o) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
(p) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338.
(q) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
(r) Karkas, M. D. Chem. Soc. Rev. 2018, 47, 5786.
(s) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302.
[4] (a) Hou, Z.-W.; Xu, H.-C. Chin. J. Chem. 2020, 38, 394.
(b) Ye, Z.; Zhang, F. Chin. J. Org. Chem. 2020, 40, 241(in Chinese). (叶增辉, 张逢质, 有机化学, 2020, 40, 241.)
(c) Qian, X.-Y.; Xiong, P.; Xu, H.-C. Acta Chim. Sinica 2019, 77, 879(in Chinese). (钱向阳, 熊鹏, 徐海超, 化学学报, 2019, 77, 879.)
(d) Yang, Q.-L.; Wang, X.-Y.; Weng, X.-J.; Yang, X.; Xu, X.-T.; Tong, X.; Fang, P.; Wu, X.-Y.; Mei, T.-S. Acta Chim. Sinica 2019, 77, 866(in Chinese). (杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866.)
(e) Zhang, H. Tang, R.; Shi, X.; Xie, L.; Wu, J. Chin. J. Org. Chem. 2019, 39, 1837(in Chinese). (张怀远, 唐蓉萍, 石星丽, 颉林, 伍家卫, 有机化学, 2019, 39, 1837.)
(f) Feng, E.-Q.; Hou, Z.-W.; Xu, H.-C. Chin. J. Org. Chem. 2019, 39, 1424(in Chinese). (冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.)
(g) Zhou, Z.; Yuan, Y.; Cao, Y.; Qiao, J.; Yao, A.; Zhao, J.; Zou, W. Chen, W.; Lei, A. Chin. J. Chem. 2019, 37, 611.
(h) Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Chin. J. Chem. 2019, 37, 547.
(i) Hou, Z.-W.; Yan, H.; Song, J.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909.
(j) Wu, Y.; Xi, Y.; Zhao, M.; Wang, S. Chin. J. Org. Chem. 2018, 38, 2590(in Chinese). (吴亚星, 席亚超, 赵明, 王思懿, 有机化学, 2018, 38, 2590.)
[5] (a) Chang, X.; Zhang, Q.; Guo, C. Angew. Chem., Int. Ed. 2020, 59, 12612.
(b) Ghosh, M.; Shinde, V. S.; Rueping, M. Beilstein J. Org. Chem. 2019, 15, 2710.
(c) Lin, Q.; Li, L.; Luo, S. Chem. Eur. J. 2019, 25, 10033.
[6] Seebach, D.; Oei, H. A. Angew. Chem., Int. Ed. 1975, 14, 634.
[7] (a) Louafi, F.; Moreau, J.; Shahane, S.; Golhen, S.; Roisnel, T.; Sinbandhit, S.; Hurvois, J.-P. J. Org. Chem. 2011, 76, 9720.
(b) Feroci, M.; Inesi, A.; Orsini, M.; Palombi, L. Org. Lett. 2002, 4, 2617.
[8] (a) Kodama, Y.; Fujiwara, A.; Kawamoto, H.; Ohta, N.; Kitani, A.; lto, S. Chem. Lett. 2001, 30, 240.
(b) Horner, L.; Degner, D. Tetrahedron Lett. 1971, 12, 1241.
[9] (a) Shiigi, H.; Mori, H.; Tanaka, T.; Demizu, Y.; Onomura, O. Tetrahedron Lett. 2008, 49, 5247.
(b) Kuroboshi, M.; Yoshihisa, H.; Cortona, M. N.; Kawakami, Y.; Gao, Z.; Tanaka, H. Tetrahedron Lett. 2000, 41, 8131.
(c) Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.; Osa, T.; Bobbitt, J. M. Chem. Commun. 1999, 1983.
[10] (a) Kashiwagi, Y.; Kurashima, F.; Chiba, S.; Anzai, J.; Osa, T.; Bobbitt, J. M. Chem. Commun. 2003, 114.
(b) Moutet, J. C.; Duboc-Toia, C.; Ménage, S.; Tingry, S. Adv. Mater. 1998, 10, 665.
(c) Komori, T.; Nonaka, T. J. Am. Chem. Soc. 1984, 106, 2656.
(d) Firth, B. E.; Miller, L. L. J. Am. Chem. Soc. 1976, 98, 8272.
(e) Watkins, B. F.; Behling, J. R.; Kariv, E.; Miller, L. L. J. Am. Chem. Soc. 1975, 97, 3549.
[11] Gourley, R. N.; Grimshaw, J.; Millar, P. G. Chem. Commun. 1967, 1278.
[12] (a) Kobayashi, S.; Sugiura, M. Adv. Synth. Catal. 2006, 348, 1496.
(b) Lohray, B. B. Tetrahedron:Asymmetry 1992, 3, 1317.
[13] (a) Sugimoto, H.; Kitayama, K.; Mori, S.; Itoh, S. J. Am. Chem. Soc. 2012, 134, 19270.
(b) Metin, O.; Alp, N. A.; Akbayrak, S.; Bicer, A.; Gultekin, M. S.; Ozkar, S.; Bozkaya, U. Green Chem. 2012, 14, 1488.
(c) Sugimoto, H.; Kitayama, K.; Mori, S.; Itoh, S. J. Am. Chem. Soc. 2012, 134, 19270.
[14] (a) Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2024.
(b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
(c) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
[15] Amundsen, R.; Balko, E. N. Appl. J. Electrochem. 1992, 22, 810.
[16]Torii, S.; Liu, P.; Tanaka, H. Chem. Lett. 1995, 24, 319.
[17] Torii, S.; Liu, P.; Bhuvaneswari, N.; Amatore, C.; Jutand, A. J. Org. Chem. 1996, 61, 3055.
[18] Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
[19] Guo, P.; Wong, K.-Y. Electrochem. Commun. 1999, 1, 559.
[20] Tanaka, H.; Kuroboshi, M.; Takeda, H.; Kanda, H.; Torii, S. J. Electroanal. Chem. 2001, 507, 75.
[21] Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480.
[22] Minato, D.; Arimoto, H.; Nagasue, Y.; Demizu, Y.; Onomura, O. Tetrahedron. 2008, 64, 6675.
[23] Onomura, O.; Arimoto, H.; Matsumura, Y.; Demizu, Y. Tetrahedron Lett. 2007, 48, 8668.
[24] Shono, T.; Hamaguchi, H.; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264.
[25] (a) Jones, A. M.; Banks, C. E. Beilstein J. Org. Chem. 2014, 10, 3056.
(b) Onomura, O. Heterocycles 2012, 85, 2111.
(c) Shono, T. Top. Curr. Chem. 1988, 148, 1.
[26] Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[27] (a) D'Oca, M. G. M.; Pilli, R. A.; Pardini, V. L.; Curi, D.; Comni-nos, F. C. M. J. Braz. Chem. Soc. 2001, 12, 507.
(b) Sierecki, E.; Errasti, G.; Martens, T.; Royer, J. Tetrahedron 2010, 66, 10002.
(c) Lee, D.-S. Tetrahedron:Asymmetry 2009, 20, 2014.
(d) Shankaraiah, N.; Pilli, R. A.; Santos, L. S. Tetrahedron Lett. 2008, 5098.
(e) Zelgert, M.; Nieger, M.; Lennartz, M.; Steckhan, E. Tetrahedron 2002, 58, 2641.
(f) Matsumura, Y.; Kanda, Y.; Shirai, K.; Onomura, O.; Maki, T. Tetrahedron 2000, 56, 7411.
[28]Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.
[29] Gao, P.-S.; Weng, X.-J.; Wang, Z.-H.; Zheng, C.; Sun, B.; Chen, Z.-H.; You, S.-L.; Mei, T.-S. Angew. Chem., Int. Ed. 2020, 59, 15254.
[30] (a) Lennox, A. J. J.; Geos, S. L.; Webster, M. P.; Koolman, H. F.; Djuric, S. W.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 11227.
(b) Wang, F.; Rafiee, M.; Stahl, S. S. Angew. Chem., Int. Ed. 2018, 57, 6686.
(c) Wu, Y.; Yi, H.; Lei, A. ACS Catal. 2018, 8, 1192.
(d) Li, C.; Zeng, C.-C.; Hu, L.-M.; Yang, F.-L.; Yoo, S. J.; Little, R. D. Electrochim. Acta 2013, 114, 560.
(e) Cao, Y.; Suzuki, K.; Tajima, T.; Fuchigami, T. Tetrahedron 2005, 6854.
[31] Ryan, M. C.; Whitemire, L. D.; Mccann, S. D.; Stahl, S. S. Inorg. Chem. 2019, 58, 10194.
[32]Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406.
[33] Huang, X.; Zhang, Q.; Lin, J.; Harms, K.; Meggers, E. Nat. Catal. 2019, 2, 34.
[34] Zhang, Q.; Chang, X.; Peng, L.; Guo, C. Angew. Chem., Int. Ed. 2019, 58, 6999.
[35] Lu, P.; Jackson, J. J.; Eickhoff, J. A.; Zakarian, A. J. Am. Chem. Soc. 2015, 137, 656.
[36] Dhawa, U.; Tian, C.; Wdowik, T.; Oliveira, J. C. A.; Hao, J.; Ackermann, L. Angew. Chem., Int. Ed. 2020, 59, 13451.
[37] Chen, B.-L.; Zhu, H.-W.; Xiao, Y.; Sun, Q.-L.; Wang, H.; Lu, J.-X. Electrochem. Commun. 2014, 42, 55.
[38] Jiao, K.-J.; Li, Z.-M.; Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2018, 5, 2244.
[39] Franco, D.; Riahi, A.; Hénin, F.; Muzart, J.; Duñach, E. Eur. J. Org. Chem. 2002, 2257.
[40] DeLano, T. J.; Reisman, S. E. ACS Catal. 2019, 9, 6751.
[41] Qiu, H.; Shuai, B.; Wang, Y.-Z.; Liu, D.; Chen, Y.-G.; Gao, P.-S.; Ma, H.-X.; Chen, S.; Mei, T.-S. J. Am. Chem. Soc. 2020, 142, 9872.
Outlines

/