Visible-Light Photoredox and Palladium Dual Catalysis in Organic Synthesis

  • Zhou Wenjun ,
  • Jiang Yuanxu ,
  • Chen Liang ,
  • Liu Kaixing ,
  • Yu Dagang
Expand
  • a College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan 641100;
    b Key Laboratory of Green Chemistry&Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064

Received date: 2020-04-28

  Revised date: 2020-05-21

  Online published: 2020-05-29

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21801176, 21772129), the National Basic Research Program of China (973 Program) (No. 2015CB856600), the Sichuan Science and Technology Program (No. 2019YJ0379) and the Open Project of Neijiang Normal University (No. KF10076).

Abstract

Palladium-catalyzed organic transformations is an important branch of organometallic chemistry. Because it can efficiently construct carbon-carbon bonds and carbon-heteroatom bonds, palladium catalysis has been widely used in synthetic chemistry, material science and pharmaceutical industry. However, some of these reactions suffer from harsh reaction conditions, including high temperature and strong base. On the other hand, the visible-light photoredox catalysis employs the visible light as the energy source to generate highly reactive intermediates and realize many novel transformations, which are rare under the normal thermal reaction conditions, under mild reaction conditions. However, there are also limitations in reaction types and substrate scope in this field. In order to solve such problems in these two fields, organic chemists have merged the visible-light photoredox catalysis and palladium catalysis, realizing a series of novel organic transformations through the electron transfer or energy transfer between photosensitizer and organic palladium complex under mild conditions with high efficiency and selectivity, which has broad substrate scope and great application potential. In these transformations, visible-light photoredox catalysis and palladium catalysis both play their respective roles and cooperate well. The application of visible light photoredox and palladium dual catalysis in organic synthesis is summarized and the future research directions in this field are analyzed, which might help the further development of this field.

Cite this article

Zhou Wenjun , Jiang Yuanxu , Chen Liang , Liu Kaixing , Yu Dagang . Visible-Light Photoredox and Palladium Dual Catalysis in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3697 -3713 . DOI: 10.6023/cjoc202004045

References

[1] For select reviews:(a) Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027.
(b) Knappke, C. E. I.; Jacobi von Wangelin, A. Chem. Soc. Rev. 2011, 40, 4948.
(c) Enthaler, S.; Company, A. Chem. Soc. Rev. 2011, 40, 4912.
(d) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937.
(e) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107.
[2] For select reviews:(a) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. ACS Catal. 2015, 5, 6111.
(b) Zhou, W.-J.; Zhang, Y.-H.; Cao, G.-M.; Liu, H.-D.; Yu, D.-G. Chin. J. Org. Chem. 2017, 37, 1322(in Chinese). (周文俊, 张逸寒, 曹光梅, 刘惠东, 余达刚, 有机化学, 2017, 37, 1322.)
[3] For select reviews:(a) Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785.
(b) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(c) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322,
(e) Tan, F.; Xiao, W. Acta Chim. Sinica 2015, 73, 85(in Chinese). (谭芬, 肖文精, 化学学报, 2015, 73, 85.)
(f) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.
(g) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(h) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
(i) Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337.
(j) Cheng, X.; Hu, X.; Lu, Z. Chin. J. Org. Chem. 2017, 37, 251(in Chinese). (程骁恺, 胡新根, 陆展, 有机化学, 2017, 37, 251.)
(k) Ding, K.; Xiao, W.; Wu, L. Acta Chim. Sinica 2017, 75, 5(in Chinese). (丁奎岭, 肖文精, 吴骊珠, 化学学报, 2017, 75, 5.)
(l) Pei, P.; Zhang, F.; Yi, H.; Lei, A. Acta Chim. Sinica 2017, 75, 15(in Chinese). (裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
(m) Wang, D.; Zhang, L.; Luo, S. Acta Chim. Sinica 2017, 75, 22(in Chinese). (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
(n) Zhong, J.; Meng, Q.; Chen, B.; Tung, C.; Wu, L. Acta Chim. Sinica 2017, 75, 34(in Chinese). (钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.)
(o) Zhang, J.; Chen, Y. Acta Chim. Sinica 2017, 75, 41(in Chinese). (张晶, 陈以昀, 化学学报, 2017, 75, 41.)
(p) Ye, H.; Xiao, C.; Lu, L. Chin. J. Org. Chem. 2018, 38, 1897(in Chinese). (叶辉, 肖聪, 陆良秋, 有机化学, 2018, 38, 1897.)
(q) Ruan, L.; Chen, C.; Zhang, X.; Sun, J. Chin. J. Org. Chem. 2018, 38, 3155(in Chinese). (阮利衡, 陈春欣, 张晓欣, 孙京, 有机化学, 2018, 38, 3155.)
(r) Wang, H.; Wu, P.; Zhao, X.; Zeng, J.; Wan, Q. Acta Chim. Sinica 2019, 77, 231(in Chinese). (王浩, 吴品儒, 赵祥, 曾静, 万谦, 化学学报, 2019, 77, 231.)
(s) Cai, B.-G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
(t) Kong, Y.; Xu, W.; Ye, F.; Weng, J. Chin. J. Org. Chem. 2019, 39, 3065(in Chinese). (孔瑶蕾, 徐雯秀, 叶飞霞翁建全, 有机化学, 2019, 39, 3065.)
(u) Ren, L.; Ran, M.; He, J.; Qian, Y.; Yao, Q. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese). (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)
(v) Chen, J.; Li, Y.; Mei, L.; Wu, H. Chin. J. Org. Chem. 2019, 39, 3040(in Chinese). (陈锦杨, 李玉涵, 梅兰, 吴红谕, 有机化学, 2019, 39, 3040.)
(w) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China:Chem. 2019, 62, 24.
(x) Hossain, A.; Bhattacharyya, A.; Reiser, O. Science 2019, 364, eaav9713.
(y) Li, S.; Xiang, S.-H.; Tan, B. Chin. J. Chem. 2020, 38, 213.
(z) Zhang, H.-H.; Chen, H.; Zhu, C.; Yu, S. Sci. China:Chem. 2020, 63, 637.
(aa) Yin, Y.; Zhao, X.; Qiao, B.; Jiang, Z. Org. Chem. Front. 2020, 7, 1283.
[4] For select reviews:(a) Paria, S.; Reiser, O. ChemCatChem 2014, 6, 2477.
(b) Hernandez-Perez, A. C.; Collins, S. K. Acc. Chem. Res. 2016, 49, 1557.
(c) Reiser, O. Acc. Chem. Res. 2016, 49, 1990.
(d) Parasram, M.; Gevorgyan, V. Chem. Soc. Rev. 2017, 46, 6227.
(e) Zhou, W.-J.; Cao, G.-M.; Zhang, Z.-P.; Yu, D.-G. Chem. Lett. 2019, 48, 181.
(f) Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, 58, 11586. For select examples for visible light-excited Pd-catalysts, see:
(g) Kurandina, D.; Parasram, M.; Gevorgyan, V. Angew. Chem., Int. Ed. 2017, 56, 14212.
(h) Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683.
(i) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307.
(j) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049.
(k) Zhou, Z.-Z.; Zhao, J.-H.; Gou, X.-Y.; Chen, X.-M.; Liang, Y.-M. Org. Chem. Front. 2019, 6, 1649.
(l) Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6579.
(m) Kancherla, R.; Muralirajan, K.; Maity, B.; Zhu, C.; Krach, P. E.; Cavallo, L.; Rueping, M. Angew. Chem., Int. Ed. 2019, 58, 3412.
(n) Huang, H.-M.; Koy, M.; Serrano, E.; Pflüger, P. M.; Schwarz, J. L.; Glorius, F. Nat. Catal. 2020, 3, 393.
(o) Torres, G. M.; Liu, L.; Arndtsen, B. A. Science 2020, 368, 318.
[5] For select reviews:(a) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
(b) Gui, Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Org. Chem. Front. 2016, 3, 522.
(c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(d) Levin, M. D.; Kim, S.; Toste, F. D. ACS Cent. Sci. 2016, 2, 293.
(e) Goddard, J.-P.; Ollivier, C.; Fensterbank, L. Acc. Chem. Res. 2016, 49, 1924.
(f) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(g) Tóth, B. L.; Tischler, O.; Novák, Z. Tetrahedron Lett. 2016, 57, 4505.
(h) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A. Acc. Chem. Res. 2016, 49, 1429.
(i) Hopkinson, M. N.; Tlahuext-Aca, A.; Glorius, F. Acc. Chem. Res. 2016, 49, 2261.
(j) Fabry, D. C.; Rueping, M. Acc. Chem. Res. 2016, 49, 1969.
(k) Lang, X.; Zhao, J.; Chen, X. Chem. Soc. Rev. 2016, 45, 3026.
(l) Zhou, W.-J.; Zhang, Y.-H.; Gui, Y.-Y.; Sun, L.; Yu, D.-G. Synthesis 2018, 50, 3359.
[6] Osawa, M.; Nagai, H.; Akita, M. Dalton. Trans. 2007, 2, 827.
[7] (a) Kalyani, D.; Mcmurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566.
(b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330.
[8] Neufeldt, S. R.; Sanford, M. S. Adv. Synth. Catal. 2012, 354, 3517.
[9] Liang, L.; Xie, M.-S.; Wang, H.-X.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. J. Org. Chem. 2017, 82, 5966.
[10] Khan, R.; Boonseng, S.; Kemmitt, P. D.; Felix, R.; Coles, J.; Tizzard, G. J.; Williams, G.; Simmonds, O.; Harvey, J.-L.; Atack, J.; Cox, H.; Spencer, J. Adv. Synth. Catal. 2017, 359, 3261.
[11] Jiang, J.; Zhang, W.-M.; Dai, J.-J.; Xu, J.; Xu, H.-J. J. Org. Chem. 2017, 82, 3622.
[12] Sahoo, M. K.; Midya, S. P.; Landge, G.; Balaraman, E. Green Chem. 2017, 19, 2111.
[13] Zhao, J.; Li, H.; Li, P.; Wang, L. J. Org. Chem. 2019, 84, 9007.
[14] Zhang, H.; Huang, X. Adv. Synth. Catal. 2016, 358, 3736.
[15] Czyz, M. L.; Lupton, D. W.; Polyzos, A. Chem.-Eur. J. 2017, 23, 14450.
[16] Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Angew. Chem., Int. Ed. 2015, 54, 1625.
[17] Lan g, S. B.; Nele, K. M. O.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606.
[18] Lang, S. B.; Nele, K. M. O.; Douglas, J. T.; Tunge, J. A. Chem. Eur. J. 2015, 21, 18589.
[19] Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.
[20] Zhang, H.-H.; Zhao, J.-J.; Yu, S. ACS Catal. 2020, 10, 4710.
[21] Zheng, C.; Cheng, W.; Li, H.; Na, R.; Shang, R. Org. Lett. 2018, 20, 2559.
[22] Shen, X.; Qian, L.; Yu, S. Sci. China:Chem. 2020, 63, 687.
[23] Liu, K.; Zou, M.; Lei, A. J. Org. Chem. 2016, 81, 7088.
[24] Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198.
[25] Xu, N.; Li, P.; Xie, Z.; Wang, L. Chem.-Eur. J. 2016, 22, 2236.
[26] Sharma, U. K.; Gemoets, H. P. L.; Schröder, F.; Noël, T.; Van der Eycken, E. V. ACS Catal. 2017, 7, 3818.
[27] Manna, M. K.; Bairy, G.; Jana, R. Org. Biomol. Chem. 2017, 15, 5899.
[28] Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y. Chem.-Eur. J. 2015, 21, 13191.
[29] Zhao, B.; Shang, R.; Cheng, W.; Fu, Y. Org. Chem. Front. 2018, 5, 1782.
[30] Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467.
[31] Shimomaki, K.; Nakajima, T.; Caner, J.; Toriumi, N.; Iwasawa, N. Org. Lett. 2019, 21, 4486.
[32] Bhunia, S. K.; Das, P.; Nandi, S.; Jana, R. Org. Lett. 2019, 21, 4632.
[33] Zhu, C.; Zhang, Y.; Liu, Z.; Zhou, L.; Liu, H.; Feng, C. Chem. Sci. 2019, 10, 6721.
[34] Choi, S.; Chatterjee, T.; Choi, W. J.; You, Y.; Cho, E. J. ACS Catal. 2015, 5, 4796.
[35] Sheri, S.; Paul, A.; Bera, M.; Venkatesh, Y.; Singh, N. D. P. Org. Lett. 2018, 20, 5533.
[36] Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13264.
[37] Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.
[38] Under the revision of the manuscript, an elegant dehydrative allylation was reported, see:Masuda, Y.; Ito, M.; Mutakami, M. Org. Lett. 2020, 22,4467.
Outlines

/