Advance and Prospective on CO2 Activation and Transformation Strategy

  • Chen Kaihong ,
  • Li Hongru ,
  • He Liangnian
Expand
  • a State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071;
    b College of Pharmacy, Nankai University, Tianjin 300353

Received date: 2020-04-19

  Revised date: 2020-05-22

  Online published: 2020-06-01

Supported by

Project supported by the National Natural Science Foundation of China (No. 21975135) and the China Postdoctoral Science Foundation (No. 2018M641624).

Abstract

Climate change and depletion of fossil fuels have drawn considerable attention. Considering carbon dioxide is both the dominant greenhouse gas and renewable C1 source, CO2 valorization into valuable chemicals is considered to reconcile the environment benefit and sustainable chemistry development. Unfortunately, the thermodynamic stability and kinetic inertness of CO2 make its chemical transformation challenging. As a consequence, developing highly efficient catalytic systems and synthetic protocols is crucial for CO2 conversion. In recent years, He's group made great progress on strategy design and catalyst development for CO2 conversion. A series novel CO2 conversion strategies are proposed, including CO2 capture and in-situ transformation, hierarchical reductive functionalization of CO2, designing thermodynamically favorable reactions by multi-component cascade reaction and photo-promoted CO2 transformation. Concurrently, the corresponding highly efficient catalytic systems were also developed based on the reaction mechanism and thus CO2 transformation was successfully performed under mild conditions. It is hoped that this review can arouse broad concern on CO2 transformation and spur its further development.

Cite this article

Chen Kaihong , Li Hongru , He Liangnian . Advance and Prospective on CO2 Activation and Transformation Strategy[J]. Chinese Journal of Organic Chemistry, 2020 , 40(8) : 2195 -2207 . DOI: 10.6023/cjoc202004030

References

[1] (a) He, M., Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.
(b) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Green Chem. 2017, 19, 3707.
(c) Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52.
(d) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
(e) Yao, X.-Y.; Zhang, Y.; Gao, S.; He, L.-N. J. Huazhong Norm. Univ., Nat. Sci. 2019, 53, 834(in Chinese). (姚向阳, 张彦, 高嵩, 何良年, 华中师范大学学报(自然科学版), 2019, 53, 834.)
(f) Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N. RSC Adv. 2011, 1, 545.
(g) Yu, B.; Diao, Z.-F.; Guo, C.-X.; He, L.-N. J. CO2 Util. 2013, 1, 60.
(h) Li, Y.-N.; Ma, R.; He, L.-N.; Diao, Z.-F. Catal. Sci. Technol. 2014, 4, 1478.
(i) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
[2] (a) Yang, Z.-Z.; He, L.-N.; Gao, J.; Liu, A.-H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
(b) Fu, H.-C.; You, F.; Li, H.-R.; He, L.-N. Front. Chem. 2019, 7, 525.
(c) Kar, S.; Goeppert, A.; Prakash, G. K. S. Acc. Chem. Res. 2019, 52, 2892.
[3] Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.
[4] Zhao, Y.-N.; Yang, Z.-Z.; Luo, S.-H.; He, L.-N. Catal. Today 2013, 200, 2.
[5] Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519.
[6] Yang, Z.-Z.; He, L.-N.; Zhao, Y.-N.; Yu, B. Environ. Sci. Technol. 2013, 47, 1598.
[7] (a) Meng, X.; Ju, Z.; Zhang, S.; Liang, X.; Solms, N.; Zhang, X.; Zhang, X. Green Chem. 2019, 21, 3456.
(b) Luo, X.; Chen, K.; Li, H.; Wang, C. Int. J. Hydrogen Energy 2016, 41, 9175.
[8] (a) Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. Angew. Chem., Int. Ed. 2014, 53, 5922.
(b) Liu, A.-H.; Yu, N.; He, L.-N. Greenhouse Gases:Sci. Technol. 2015, 5, 17.
(c) Shi, G.; Chen, K.; Wang, Y.; Li, H.; Wang, C. ACS Sustainable Chem. Eng. 2018, 6, 5760.
(d) Lang, X.-D.; Yu, Y.-C.; Li, Z.-M.; He, L.-N. J. CO2 Util. 2016, 15, 115.
[9] Liu, A.-H.; Ma, R.; Song, C,; Yang, Z.-Z.; Yu, A.; Cai, Y.; He, L.-N.; Zhao, Y.-N.; Yu, B.; Song, Q.-W. Angew. Chem., Int. Ed. 2012, 51, 11306.
[10] Zhang, S.; Li, Y.-N.; Zhang, Y.-W.; He, L.-N.; Yu, B.; Song, Q.-W.; Lang, X.-D. ChemSusChem 2014, 7, 1484.
[11] (a) Li, Y.-N.; He, L.-N.; Liu, A.-H.; Lang, X.-D.; Yang, Z.-Z.; Yu, B.; Luan, C.-R. Green Chem. 2013, 15, 2825.
(b) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem. Soc. 2016, 138, 778.
(c) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. Green Chem. 2016, 18, 5831.
[12] Li, Y.-N.; He, L.-N.; Lang, X.-D.; Liu, X.-F.; Zhang, S. RSC Adv. 2014, 4, 49995.
[13] Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine, M.; Cantat, T. Angew. Chem., Int. Ed. 2012, 51, 187.
[14] (a) Liu, X.-F.; Ma, R.; Qiao, C.; Cao, H.; He, L.-N. Chem.-Eur. J. 2016, 22, 16489.
(b) Fang, C.; Lu, C.; Liu, M.; Zhu, Y.; Fu, Y.; Liu, B.-L. ACS Catal. 2016, 6, 7876.
[15] (a) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Green Chem. 2017, 19, 1726.
(b) Liu, X.-F.; Qiao, C.; Li, X.-Y.; He, L.-N. Pure Appl. Chem. 2018, 90, 1099.
(c) Liu, X.-F.; Li, X.-Y.; Qiao, C.; He, L.-N. Synlett 2018, 28, 548.
(d) Liu, X.-F.; Li, X.-Y.; He, L.-N. Eur. J. Org. Chem. 2019, 2019, 2347.
[16] (a) Jacquet, O.; Das Neves Gomes, C.; Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.
(b) Li, X.-Y.; Zheng, S.-S.; Liu, X.-F.; Yang, Z.-W.; Tan, T.-Y.; Yu, A.; He, L.-N. ACS Sustainable Chem. Eng. 2018, 6, 8130.
(c) Li, G.; Chen, J.; Zhu, D.-Y.; Chen, Y.; Xia, J.-B. Adv. Synth. Catal. 2018, 360, 2364.
[17] (a) Wang, M.-Y.; Wang, N.; Liu, X.-F.; Qiao, C.; He, L.-N. Green Chem. 2018, 20, 1564.
(b) Liu, X.-F.; Li, X.-Y.; Qiao, C.; Fu, H.-C.; He, L.-N. Angew. Chem., Int. Ed. 2017, 56, 7425.
(c) Cao, Y.; Wang, N.; He, X.; Li, H.-R.; He, L.-N. ACS Sustainable Chem. Eng. 2018, 6, 15032.
[18] (a) Li, X.-D.; Xia, S.-M.; Chen, K.-H.; Liu, X.-F.; Li, H.-R.; He, L.-N. Green Chem. 2018, 20, 4853.
(b) Li, W.-D.; Zhu, D.-Y.; Li, G.; Chen, J.; Xia, J.-B. Adv. Synth. Catal. 2019, 361, 5098.
[19] Lang, X.-D.; He, L.-N. ChemSusChem 2018, 11, 2062.
[20] (a) Qiao, C.; Liu, X.-F.; Liu, X.; He, L.-N. Org. Lett. 2017, 19, 1490.
(b) Qiao, C.; Yao, X.-Y.; Liu, X.-F.; Li, H.-R.; He, L.-N. Asian J. Org. Chem. 2018, 7, 1815.
[21] Lang, X.-D.; You, F.; He, X.; Yu, Y.-C.; He, L.-N. Green Chem. 2019, 21, 509.
[22] (a) Diao, Z.-F.; Zhou, Z.-H.; Guo, C.-X.; Yu, B.; He, L.-N. RSC Adv. 2016, 6, 32400.
(b) Du, Y.; Kong, D.-L.; Wang, H.-Y.; Cai, F.; Tian, J.-S.; Wang, J.-Q.; He, L.-N. J. Mol. Catal. A:Chem. 2005, 241, 233.
(c) Tamura, M.; Honda, M.; Nakagawa, Y.; Tomishige, K. J. Chem. Technol. Biotechnol. 2014, 89, 19.
(d) Liu, A.-H.; Li, Y.-N.; He, L.-N. Pure Appl. Chem. 2012, 84, 581.
(e) Lang, X.-D.; He, L.-N. Chem. Rec. 2016, 16, 1337.
(f) Li, X.-D.; He, X.; Liu, X.-F.; He, L.-N. Sci. China:Chem. 2017, 60, 841.
(g) Wang, M.-Y.; He, L.-N. Sci. China:Chem. 2016, 59, 507.
[23] Zhou Z.-H.; Xia S.-M.; He, L.-N. Acta Phys.-Chim. Sin. 2018, 34, 838.
[24] Zhou, Z.-H.; Song, Q.-W.; He, L.-N. ACS Omega 2017, 2, 337.
[25] Song, Q.-W.; Zhou, Z.-H.; Wang, M.-Y.; Zhang, K.; Liu, P.; Xun, J.-Y.; He, L.-N. ChemSusChem 2016, 9, 2054.
[26] Li, X.-D.; Song, Q.-W.; Lang, X.-D.; Chang, Y.; He, L.-N. ChemPhysChem 2017, 18, 3182.
[27] Li, X.-D.; Cao, Y.; Ma, R.; He, L.-N. J. CO2 Util. 2018, 25, 338.
[28] Xia, S.-M.; Song, Y.; Li, X.-D.; Li, H.-R.; He, L.-N. Molecules 2018, 23, 3033.
[29] Song, Q.-W.; Yu, B.; Li, X.-D.; Ma, R.; Diao, Z.-F.; Li, R.-G.; Li, W.; He, L.-N. Green Chem. 2014, 16, 1633.
[30] Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967.
[31] Li, X.-D.; Lang, X.-D.; Song, Q.-W.; Guo, Y.-K.; He, L.-N. Chin. J. Org. Chem. 2016, 36, 744(in Chinese). (李雪冬, 郎咸东, 宋清文, 郭亚坤, 何良年, 有机化学, 2016, 36, 744.)
[32] (a) Song, Q.-W.; Chen, W.-Q.; Ma, R.; Yu, A.; Li, Q.-Y.; Chang, Y.; He, L.-N. ChemSusChem 2015, 8, 821.
(b) Zhou, Z.-H.; Guo, C.-X.; Xie, J.-N.; Liu, K.-X.; He, L.-N. Curr. Org. Synth. 2017, 14, 1185.
(c) He, L.-N. Curr. Org. Synth. 2020, 17, 2.
(d) He, L.-N. Mini-Rev. Org. Chem. 2019, 16, 409.
[33] (a) Zhou, Z.-H.; Zhang, X.; Huang, Y.-F.; Chen, K.-H.; He, L.-N. Chin. J. Catal. 2019, 40, 1345.
(b) Zhou, Z.-H.; Chen, K.-H.; He, L.-N. Chin. J. Chem. 2019, 37, 1223.
[34] (a) Bonin, J.; Maurin, A.; Robert, M. Coord. Chem. Rev. 2017, 334, 184.
(b) Tamaki, Y.; Ishitani, O. ACS Catal. 2017, 7, 3394.
(c) Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. Adv. Mater. 2018, 1804710.
(d) Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194.
(e) Zhao, Y.; Waterhouse, G. I. N.; Chen G.; Xiong, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. Chem. Soc. Rev. 2019, 48, 1972.
[35] (a) Ye, J. H.; Miao, M.; Huang, H.; Yan, S. S.; Yin, Z. B.; Zhou, W. J.; Yu, D. G. Angew. Chem., Int. Ed. 2017, 56, 15416.
(b) Yin, Z. B.; Ye, J. H.; Zhou, W. J.; Zhang, Y. H.; Ding, L.; Gui, Y. Y.; Yan, S. S.; Li, J.; Yu, D. G. Org. Lett. 2018, 20, 190.
(c) Sun, L.; Ye, J. H.; Zhou, W. J.; Zeng, X.; Yu, D. G. Org. Lett. 2018, 20, 3049.
(d) Ju, T.; Fu, Q.; Ye, J. H.; Zhang, Z.; Liao, L. L.; Yan, S. S.; Tian, X. Y.; Luo, S. P.; Li, J.; Yu, D. G. Angew. Chem., Int. Ed. 2018, 57, 13897.
(e) Liao, L. L.; Cao, G. M.; Ye, J. H.; Sun, G. Q.; Zhou, W. J.; Gui, Y. Y.; Yan, S. S.; Shen, G.; Yu, D. G. J. Am. Chem. Soc. 2018, 140, 17338.
(f) Fan, X.; Gong, X.; Ma, M. Nat. Commun. 2018, 9, 4936.
(g) Murata, K.; Numasawa, N.; Shimomaki, K.; Chem. Commun. 2017, 53, 3098.
(h) Yeung, C. S. Angew. Chem., Int. Ed. 2019, 58, 5491.
[36] Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.
[37] He, X.; Cao, Y.; Lang, X.-D.; Wang, N.; He, L.-N. ChemSusChem 2018, 11, 3382.
[38] (a) He, L. N.; Yang, Z. Z.; Liu, A. H.; Gao, J. In Advances in CO2 Conversion and Utilization, ACS Symposium Series, Vol. 1056, Ed.:Hu, Y. H., American Chemical Society, Washington DC, 2010, p. 77.
(b) He, L. N. Carbon Dioxide Chemistry, Science Press, Beijing, 2013(in Chinese). (何良年, 二氧化碳化学, 科学出版社, 北京, 2013.)
[39] (a) Poland, S. I.; Darensbourg, D. J. Green Chem. 2017, 19, 4990.
(b) Wang, Y.; Darensbourg, D. J. Coord. Chem. Rev. 2018, 372, 85.
(c) Lu, X. B.; Darensbourg, D. J. Chem. Soc. Rev. 2012, 41, 1462.
(d) Kember, M. R.; Buchard, A.; Williams, C. K. Chem. Commun. 2011, 47, 141.
(e) Lu, X. B.; Ren, W. M.; Wu, G. P. Acc. Chem. Res. 2012, 45, 1721.
[40] (a) Leino, E.; Maki-Arvela, P.; Eta, V. Appl. Catal., A 2010, 383, 1.
(b) Shukla, K.; Srivastava, V. C. Catal. Rev.:Sci. Eng. 2017, 59, 1.
(c) Dai, W. L.; Luo, S. L.; Yin, S. F. Appl. Catal., A 2009, 366, 2.
(d) Sakakura, T.; Kohno, K. Chem. Commun. 2009, 1312.
(e) Tamboli, A. H.; Chaugule, A. A.; Kim, H. Chem. Eng. J. 2017, 323, 530.
[41] (a) Broere, D. L. J.; Mercado, B. Q.; Holland, P. L. Angew. Chem., Int. Ed. 2018, 57, 6507.
(b) Waldman, T. E.; Mcghee, W. D. J. Chem. Soc., Chem. Commun. 1994, 8, 957.
(c) Camp, C.; Chatelain, L.; Kefalidis, C. E. Chem. Commun. 2015, 51, 15454.
(d) Maria, L.; Bandeira, N. A. G.; Marcalo, J. Chem. Commun. 2020, 56, 431.
(e) Keane, A. J.; Farrell, W. S.; Yonke, B. L. Angew. Chem., Int. Ed. 2015, 54, 10220.
[42] (a) Yoo, W. J.; Nguyen, T. V. Q.; Kobayashi, S. Angew. Chem., Int. Ed. 2014, 53, 10213.
(b) Ye, J. H.; Zhu, L.; Yan, S. S.; Miao, M.; Zhang, X. C.; Zhou, W. J.; Li, J.; Lan, Y.; Yu, D. G. ACS Catal. 2017, 7, 8324.
(c) Zhang, W. Z.; Yang, M. W.; Yang, X. T.; Shi, L. L.; Wang, H. B.; Lu, X. B. Org. Chem. Front. 2016, 3, 217.
(d) Cheng, L.; Xie, J. Chin. J. Org. Chem. 2020, 40, 247(in Chinese). (程磊, 谢建华, 有机化学, 2020, 40, 247.)
(e) Xu, P., Wang, S.; Fang, Y.; Ji, S. J. Chin. J. Org. Chem. 2018, 38, 1626(in Chinese). (徐佩, 汪顺义, 方毅, 纪顺俊, 有机化学, 2018, 38, 1626.)
(f) Zhang, W.; Lü, X. Chin. J. Catal. 2012, 33, 745(in Chinese). (张文珍, 吕小兵, 催化学报, 2012, 33, 745.)
(g) Zhu, Q.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813(in Chinese). (朱庆, 王露, 夏春谷, 刘超, 有机化学, 2016, 36, 2813.)
(h) Fan Q.; Liu, J.; Chen J.; Xia, C. Chin. J. Catal. 2012, 33, 1435(in Chinese). (樊启佳, 刘建华, 陈静, 夏春谷, 催化学报, 2012, 33, 1435.)
(i) Jia, X.; Wang, Z.; Xia, C.; Ding, K. Chin. J. Org. Chem. 2013, 33, 1369(in Chinese). (贾肖飞, 王正, 夏春谷, 丁奎岭, 有机化学, 2013, 33, 1369.)
(j) Liu, Q.; Shi, L.; Liu, N. Chin. J. Org. Chem. 2019, 39, 2882(in Chinese). (刘铨瑶, 石磊, 刘宁, 有机化学, 2019, 39, 2882.)
(k) Jiang, H.; Zhang, Y.; Xiong, W.; Cen, J.; Wang, L.; Cheng, R.; Qi, C.; Wu, W. Org. Lett. 2019, 21, 345;
(l) Zhang,Y.; Xiong, W.; Cen, J.; Yan, W.; Wu, Y.; Qi, C.; Wu, W.; Jiang, H. Chem. Commun. 2019, 55, 12304.
(m) Yu, B.; Xie, J. N.; Zhong, C. L.; Li, W.; He, L. N. ACS Catal. 2015, 5, 3940;
(n) Qiu, J.; Gao, S.; Li, C.; Zhang, L.; Wang, Z.; Wang, X.; Ding, K. Chem.-Eur. J. 2019, 25, 13874.
[43] (a) Xie, C.; Chen, C.; Yu, Y. Nano Lett. 2017, 17, 3798.
(b) Ramirez, A.; Ould-Chikh, S.; Gevers, L. ChemCatChem 2019, 11, 2879.
(c) Yang, H.; Zhang, C.; Gao, P. Catal. Sci. Technol. 2017, 7, 4580.
(d) Prieto, G. ChemSusChem 2017, 10, 1056.
(e) Aitbekova, A.; Goodman, E. D.; Wu, L. Angew. Chem., Int. Ed. 2019, 58, 17451.
(f) Saeidi, S.; Amin, N. A. S.; Rahimpour, M. R. J. CO2 Util. 2014, 5, 66.
(g) Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
(h) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978(in Chinese). (李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978.)
(i) Zhang, L.; Han, Z.; Zhang, L.; Li, M.; Ding, K. Chin. J. Org. Chem. 2016, 36, 1824(in Chinese). (张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
(j) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.
(k) Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
(l) Dong, K.; Razzaq, R.; Hu, Y.; Ding, K. Top Curr. Chem. 2017, 375, 203.
[44] Wang, H.; Zhao, Y.; Ke, Z.; Yu, B.; Li, R.; Wu, Y.; Wang, Z.; Han, J.; Liu, Z. Chem. Commun. 2019, 55, 3069.
[45] (a) Akatsuka, M.; Kawaguchi, Y.; Itoh, R.; Ozawa, A.; Yamamoto, M.; Tanabe, T.; Yoshida, T. Appl. Catal., B 2020, 262, 118247.
(b) Teramura, K.; Hori, K.; Terao, Y.; Huang, Z.; Iguchi, S.; Wang, Z.; Asakura, H.; Hosokawa, S.; Tanaka, T. J. Phys. Chem. C 2017, 121, 8711.
(c) Nakada, A.; Ishitani, O. ACS Catal. 2018, 8, 354.
(d) Takayama, T.; Sato, K.; Fujimura, T.; Kojima, Y.; Iwase A.; Kudo, A. Faraday Discuss. 2017, 198, 397.
(e) Barman, S.; Das, S.; Sreejith S. S.; Garai, S.; Pochamoni, R.; Roy, S. Chem. Commun. 2018, 54, 2369.
(f) Nakanishi, H.; Iizuka, K.; Takayama, T.; Iwase, A.; Kudo, A. ChemSusChem 2017, 10, 112.
(g) Yin, G.; Sako, H.; Gubbala, R. V.; Ueda, S.; Yamaguchi, A.; Abe, H.; Miyauchi, M. Chem. Commun. 2018, 54, 3947.
[46] (a) Xu, S.; Carter, E. A. Chem. Rev. 2019, 119, 6631;
(b) Yuan, Y. P.; Ruan, L. W.; Barber, J. Energy Environ. Sci. 2014, 7, 3934.
(c) Daiyan, R.; Lu, X.; Ng, Y. H. ChemSusChem 2017, 10, 4342.
[47] He, L. N.; Wang, J. Q.; Wang, J. L. Pure Appl. Chem. 2009, 81, 2069.
[48] (a) Lang, X. D.; Yu, Y. C.; He, L. N. J. Mol. Catal. A:Chem. 2016, 420, 208.
(b) Xu, H.; Liu, X. F.; Cao, C. S.; Zhao, B.; Cheng, P.; He, L. N. Adv. Sci. 2016, 3, 1600048.
(c) Cao, C. S.; Xia, S. M.; Song, Z. J.; Xu, H.; Shi, Y.; He, L. N.; Cheng, P.; Zhao, B. Angew. Chem., Int. Ed. 2020, 59, 8586.
[49] (a) Li, Y. N.; He, L. N. Chin. Sci. Bull. 2015, 60, 1465(in Chinese). (李雨浓, 何良年, 科学通报, 2015, 60, 1465.)
(b) Fu, H. C.; Fei, Y.; Li, H. R.; He, L. N. Front. Chem. 2019, 7, 525.
Outlines

/