Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions via Synergetic Catalysis

  • Tian Fei ,
  • Zhang Jian ,
  • Yang Wulin ,
  • Deng Weiping
Expand
  • School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237

Received date: 2020-05-04

  Revised date: 2020-05-23

  Online published: 2020-06-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772038, 21901072), the Fundamental Research Funds for the Central Universities (No. 222201814048) and the Shanghai Sailing Program (No. 18YF140560).

Abstract

Iridium-catalyzed asymmetric allylic substitution reaction has become one of the most important methods for the synthesis of chiral compounds due to its exceptional branched regioselectivity and excellent enantioselectivity. The scope of nucleophiles will be further expanded by synergetic catalysis system of iridium and other catalysts (organocatalysts, other transition metal catalysts). Besides, it is possible to improve the enantioselectivity of the reaction and even realize the stereodivergent synthesis of the products with multiple stereocenters. The progress in the field of catalytic asymmetric allylic substitutions through synergetic iridium and organocatalysis or other transition metal catalysis is summarized. These reactions are classified according to the types of catalysts (aminocatalyst, phase transfer catalyst, Brønsted acid, Lewis base, transition metal). Meanwhile, the mechanism of representative reactions, the existing problems and the prospects in this area are briefly described.

Cite this article

Tian Fei , Zhang Jian , Yang Wulin , Deng Weiping . Progress in Iridium-Catalyzed Asymmetric Allylic Substitution Reactions via Synergetic Catalysis[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3262 -3278 . DOI: 10.6023/cjoc202005008

References

[1] Trost, B. M.; van Vranken, D. L. Chem. Rev. 1996, 96, 395.
[2] Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
[3] Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921
[4] Milhau, L.; Guiry, P. J. Top. Organomet. Chem. 2011, 38, 95.
[5] Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647.
[6] Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am. Chem. Soc. 2001, 123, 9525.
[7] Takeuchi, R. Synlett 2002, 1954.
[8] Belda, O.; Moberg, C. Acc. Chem. Res. 2004, 37, 159.
[9] Trost, B. M. Org. Process Res. Dev. 2012, 16, 185.
[10] Moberg, C. Org. React. 2014, 84, 1.
[11] Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104.
[12] Malkov, A. V.; Gouriou, L.; Lloyd-Jones, G. C.; Starý, I.; Langer, V.; Spoor, P.; Vinader, V.; Kočovský, P. Chem.-Eur. J. 2006, 12, 6910.
[13] Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2007, 129, 14548.
[14] Trost, B. M.; Zhang, Y. Chem.-Eur. J. 2010, 16, 296.
[15] Trost, B. M.; Zhang, Y. Chem.-Eur. J. 2011, 17, 2916.
[16] Ozkal, E.; Pericas, M. A. Adv. Synth. Catal. 2014, 356, 711.
[17] Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 462.
[18] Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.
[19] Onitsuka, K.; Matsushima, Y.; Takahashi, S. Organometallics 2005, 24, 6472.
[20] Onitsuka, K.; Okuda, H.; Sasai, H. Angew. Chem., Int. Ed. 2008, 47, 1454.
[21] Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc. 2013, 135, 1869.
[22] Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Org. Lett. 2014, 16, 1470.
[23] Kanbayashi, N.; Hosoda, K.; Kato, M.; Takii, K.; Okamura, T.; Onitsuka, K. Chem. Commun. 2015, 51, 10895.
[24] Leahy, D. K.; Evans, P. A. In Modern Rhodium-Catalyzed Organic Reactions, Ed.:Evans, P. A., John Wiley & Sons, Inc., New York, 2005; p. 191.
[25] Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
[26] Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.
[27] Kazmaier, U.; Stolz, D. Angew. Chem., Int. Ed. 2006, 45, 3072.
[28] Sidera, M.; Fletcher, S. P. Nat. Chem. 2015, 7, 935.
[29] Li, C.; Breit, B. Chem.-Eur. J. 2016, 22, 14655.
[30] Parveen, S.; Li, C.; Hassan, A.; Breit, B. Org. Lett. 2017, 19, 2326.
[31] Didiuk, M. T.; Morken, J. P.; Hoveyda, A. H. J. Am. Chem. Soc. 1995, 117, 7273.
[32] Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15.
[33] Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098.
[34] Langlois, J. B.; Alexakis, A. Organomet. Chem. 2011, 38, 235.
[35] Malda, H.; van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169.
[36] Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 6877.
[37] Yoshikai, N.; Zhang, S.-L.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 12862.
[38] Selim, K. B.; Matsumoto, Y.; Yamada, K.; Tomioka, K. Angew. Chem., Int. Ed. 2009, 48, 8733.
[39] Langlois, J.-B.; Alexakis, A. Adv. Synth. Catal. 2010, 352, 447.
[40] Shi, Y.; Jung, B.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2015, 137, 8948.
[41] You, H.; Rideau, E.; Sidera, M.; Fletcher, S. P. Nature 2015, 517, 351.
[42] Rideau, E.; You, H.; Sidera, M.; Claridge, T. D.W.; Fletcher, S. P. J. Am. Chem. Soc. 2017, 139, 5614.
[43] Tsuji, J.; Takahashi, H.; Morikawa, M. Tetrahedron Lett. 1965, 4387.
[44] Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.
[45] Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 396.
[46] Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
[47] Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
[48] Takeuchi, R.; Kashio, M. Angew. Chem., Int. Ed. 1997, 36, 263.
[49] Janssen, J. P.; Helmchen, G. Tetrahedron Lett. 1997, 38, 8025.
[50] Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
[51] Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2011, 38, 155.
[52] Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.
[53] Cheng, Q.; Tu, H.; Zheng, C.; Qu J.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.
[54] Deng, Y.; Yang, W.; Yang, X.; Yang, D. Chin. J. Org. Chem. 2017, 37, 3039(in Chinese). (邓颖颍, 杨文, 杨新, 杨定乔, 有机化学, 2017, 37, 3039.)
[55] Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.
[56] Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2010, 2999.
[57] Zhou, J. Chem. Asian J. 2010, 5, 422.
[58] Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.
[59] Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.
[60] Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.
[61] Inamdar, S. M.; Shinde, V.S.; Patil, N. T. Org. Biomol. Chem. 2015, 13, 8116.
[62] Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.
[63] Zhang, M.-M.; Luo, Y.-L.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838(in Chinese). (张毛毛, 骆元元, 陆良秋, 肖文精, 化学学报, 2018, 76, 838).
[64] Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471.
[65] Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
[66] Xu, L.-W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 1807.
[67] Gualandi, A.; Mengozzi, L.; Wilson, C. M.; Cozzi, P. G. Chem. Asian J. 2014, 9, 984.
[68] Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.
[69] Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
[70] Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065.
[71] Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2014, 136, 3020.
[72] Schafroth, M. A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2014, 53, 13898.
[73] Sandmeier, T.; Krautwald, S.; Zipfel, H. F.; Carreira, E. M. Angew. Chem., Int. Ed. 2015, 54, 14363.
[74] For an example of water as a nucleophile in allylic substitution, see:Lüssem, B. J.; Gais, H.-J. J. Am. Chem. Soc. 2003, 125, 6066.
[75] Sandmeier, T.; Goetzke, F. W.; Krautwald, S.; Carreira, E. M. J. Am. Chem. Soc. 2019, 141, 12212.
[76] Sandmeier, T.; Carreira, E. M. Org. Lett. 2020, 22, 1135.
[77] Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2015, 54, 10193.
[78] Liang, X.; Zhang, T.-Y.; Meng, C.-Y.; Li, X.-D.; Wei, K.; Yang, Y.-R. Org. Lett. 2018, 20, 4575.
[79] Yao, J.-N.; Liang, X.; Wei, K.; Yang, Y.-R. Org. Lett. 2019, 21, 8485.
[80] Zhang, M.-M.; Wang, Y.-N.; Wang, B.-C.; Chen, X.-W.; Lu, L.-Q.; Xiao, W.-J. Nat. Commun. 2019, 10, 2716.
[81] Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101.
[82] Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
[83] Pellissier, H. Tetrahedron 2017, 73, 2831.
[84] Chen, Z.-C.; Chen, Z.; Yang, Z.-H.; Guo, L.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2019, 58, 15021.
[85] Chen, P.; Li, Y.; Chen, Z.-C.; Du, W.; Chen, Y.-C. Angew. Chem., Int. Ed. 2020, 59, 7083.
[86] Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312.
[87] Chen, G.; Deng, Y.; Gong, L.-Z; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C.; Chan, A. S. Tetrahedron: Asymmetry 2001, 21, 1567.
[88] Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.
[89] Kanayama, T.; Yoshida, K.; Miyabe, H.; Kimachi, H.; Takemoto, Y. J. Org. Chem. 2003, 68, 6197.
[90] Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013, 135, 3, 994.
[91] Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Angew. Chem., Int. Ed. 2013, 52, 7532.
[92] Su, Y.-L; Li, Y.-H.; Chen, Y.-G.; Han, Z.-Y. Chem. Commun. 2017, 53, 1985.
[93] Jiang, X.; Hartwig, J. F. Angew. Chem., Int. Ed. 2017, 56, 8887.
[94] Wei, L.; Xiao, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Chin. J. Chem. 2020, 38, 82.
[95] Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
[96] Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
[97] Shen, D.; Chen, Q.; Yan, P.; Zeng, X.; Zhong, G. Angew. Chem., Int. Ed. 2017, 56, 3242.
[98] Jellerichs, B. G.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758.
[99] Birman, V. B.; Ulffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226.
[100] Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478.
[101] Schwarz, K. J.; Amos, J. L.; Klein, J. C.; Do, D. T.; Snaddon, T. N. J. Am. Chem. Soc. 2016, 138, 5214.
[102] Jiang, X.; Beiger, J. J.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 87.
[103] Ye, K.-Y.; Cheng, Q.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. Angew. Chem., Int. Ed. 2016, 55, 8113.
[104] Singha, S.; Serrano, E.; Mondal, S.; Daniliuc, C. G.; Glorius, F. Nat. Catal. 2020, 3, 48.
[105] Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
[106] He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513.
[107] Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.
[108] Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.; Wang, C.-J. J. Am. Chem. Soc. 2018, 140, 1508.
[109] Zhang, J.; Huo, X.; Li, B.; Chen, Z.; Zou, Y.; Sun, Z.; Zhang, W. Adv. Synth. Catal. 2019, 361, 1130.
[110] Jiang, X.; Boehm, P.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1239.
[111] Xu, S.-M.; Wei, L.; Shen, C.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 5553.
[112] Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 4812.
[113] Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Nat. Commun. 2019, 10, 1594.
[114] Zhan, M.; Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. 2016, 6, 3381.
Outlines

/