Phathalocyanine Metal Complexes (M=Fe, Co, and Cu) Catalyzed Aerobic Oxidation of 2-Amino-benzyl Alcohols to Access Quinazolines and Quinolines

  • Liu Zilin ,
  • Zhang Xiaojie ,
  • Zhang Heng ,
  • Jiang Hui ,
  • Zhao Xuemei ,
  • Shi Linlin ,
  • Zhu Xinju ,
  • Hao Xinqi ,
  • Song Maoping
Expand
  • College of Chemistry, Zhengzhou University, Zhengzhou 450001

Received date: 2020-03-31

  Revised date: 2020-05-27

  Online published: 2020-06-13

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21672192, 21803059, U1904212, 21929101).

Abstract

Phathalocyanine metal complexes catalyzed oxidative condensation of 2-aminobenzyl alcohols with nitriles and ketones has been developed under air to afford quinazolines and quinolines, respectively. After systematic investigation, iron(II) phathalocyanine displayed higher catalytic activity in quinazoline synthesis and copper(II) phathalocyanine showed higher efficiency in quinoline preparation. Under the optimized conditions, various nitriles and ketones were well adaptted to give the corresponding products in good yields.

Cite this article

Liu Zilin , Zhang Xiaojie , Zhang Heng , Jiang Hui , Zhao Xuemei , Shi Linlin , Zhu Xinju , Hao Xinqi , Song Maoping . Phathalocyanine Metal Complexes (M=Fe, Co, and Cu) Catalyzed Aerobic Oxidation of 2-Amino-benzyl Alcohols to Access Quinazolines and Quinolines[J]. Chinese Journal of Organic Chemistry, 2020 , 40(9) : 2755 -2763 . DOI: 10.6023/cjoc202003068

References

[1] (a) Juvale, K.; Gallus, J.; Wiese, M. Bioorg. Med. Chem. 2013, 21, 7858.
(b) Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Eur. J. Med. Chem. 2014, 76, 193.
(c) Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Eur. J. Med. Chem. 2015, 90, 124.
(d) Connolly, D. J.; Cusack, D.; O'Sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61, 10153.
[2] (a) Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem.. Int. Ed. 2012, 51, 8077.
(b) Panja, S. K.; Dwivedi, N.; Saha, S. Tetrahedron Lett. 2012, 53, 6167.
(c) Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. J. Org. Chem. 2013, 78, 11342.
(d) Gopalaiah, K.; Saini, A.; Devi, A. Org. Biomol. Chem. 2017, 15, 5781.
(e) Sarode, S. A.; Jadhav, V. G.; Nagarkar, J. M. Tetrahedron Lett. 2017, 58, 779.
(f) Deshmukh, D. S.; Bhanage, B. M. Synlett 2018, 29, 979.
[3] (a) Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136.
(b) Li, C.; An, S.; Zhu, Y.; Zhang, J.; Kang, Y.; Liu, P.; Wang, Y.; Li, J. RSC Adv., 2014, 4, 49888.
(c) Zhang, Z.; Wang, M.; Zhang, C.; Zhang, Z.; Lu, J.; Wang, F. Chem. Commun., 2015, 51, 9205.
(d) Chen, X.; Chen, T.; Ji, F.; Zhou, Y.; Yin, S.-F. Catal. Sci. Technol. 2015, 5, 2197.
(e) Tiwari, A. R.; Bhanage, B. M. Org. Biomol. Chem. 2016, 14, 10567.
(f) Yang, X.-L.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Asian J. Org. Chem. 2017, 6, 449.
(g) Tiwari, A. R.; Bhanage, B. M. Asian J. Org. Chem. 2017, 6, 831.
(h) Chatterjee, T.; Kim, D. I.; Cho, E. J. J. Org. Chem. 2018, 83, 7423.
[4] (a) Malakar, C. C.; Baskakova, A.; Conrad, J.; Beifuss, U. Chem. Eur. J., 2012, 18, 8882.
(b) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem.. Int. Ed. 2009, 48, 348.
(c) Xu, C.; Jia, F.-C.; Zhou, Z.-W.; Zheng, S.-J.; Li, H.; Wu, A.-X. J. Org. Chem. 2016, 81, 3000.
[5]
(d) Raut, A. B.; Tiwari, A. R.; Bhanage, B. M. ChemCatChem, 2017, 9, 1292.
[6]
(e) Omar, M. A.; Conrad, J.; Beifuss, U. Tetrahedron 2014, 70, 3061.
[7] (a) Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett., 2010, 12, 3963.
(b) Lv, Y.; Li, Y.; Xiong, T.; Pu, W.; Zhang, H.; Sun, K.; Liu, Q.; Zhang, Q. Chem. Commun. 2013, 49, 6439.
(c) Zhang, W.; Guo, F.; Wang, F.; Zhao, N.; Liu, L.; Li, J.; Wang, Z. Org. Biomol. Chem. 2014, 12, 5752.
(d) Cheng, X.; Wang, H.; Xiao, F.; Deng, G.-J. Green Chem. 2016, 18, 5773.
[8] (a) Lin, J.-P.; Zhang, F.-H.; Long, Y.-Q. Org. Lett. 2014, 16, 2822.
(b) Xu, L.; Li, H.; Liao, Z.; Lou, K.; Xie, H.; Li, H.; Wang, W. Org. Lett. 2015, 17, 3434.
(c) Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem.. Int. Ed. 2016, 55, 10386.
(d) Wang, X.; Jiao, N. Org. Lett. 2016, 18, 2150.
[9] (a) Su, X.; Chen, C.; Wang, Y.; Chen, J.; Lou, Z.; Li, M. Chem. Commun. 2013, 49, 6752.
(b) Tang, L.; Yang, Y.; Wen, L.; Zhang, S.; Zha, Z.; Wang, Z. Org. Chem. Front. 2015, 2, 114.
(c) Lei, X.; Gao, M.; Tang, Y. Org. Lett. 2016, 18, 4990.
(d) Tang, L.; Wang, P.; Fan, Y.; Yang, X.; Wan, C.; Zha, Z. ChemCatChem 2016, 8, 3565.
(e) Ramanathan, M.; Liu, S.-T. J. Org. Chem. 2017, 82, 8290.
(f) Zhang, L.; Li, J.; Hu, Z.; Dong, J.; Zhang, X.-M.; Xu, X. Adv. Synth. Catal. 2018, 360, 1938.
(g) Satish, G.; Polu, A.; Kota, L.; Ilangovan, A. Org. Biomol. Chem., 2019, 17, 4774.
[10] (a) Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412.
(b) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
(c) Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev., 2017, 117, 9086.
(d) Wang, S.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2017, 53, 3165.
(e) Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816.
[11] (a) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
(b) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736.
(c) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
[12] (a) Sorokin, A. B. Chem. Rev. 2013, 113, 8152.
(b) Colomban, C. Synlett 2014, 25, 2521. (a) Piera, J.; Persson, A.; Caldentey, X.; Bäckvall, J.-E. J. Am. Chem. Soc. 2007, 129, 14120.
(b) Gigant, N.; Bäckvall, J.-E. Chem. Eur. J. 2013, 19, 10799.
(c) Gigant, N.; Bäckvall, J.-E. Org. Lett. 2014, 16, 1664.
[13] (a) Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew. Chem.. Int. Ed. 2010, 49, 10154.
(b) Hirose, D.; Taniguchi, T.; Ishibashi, H. Angew. Chem.. Int. Ed. 2013, 52, 4613.
(c) Hashimoto, T.; Hirose, D.; Taniguchi, T. Angew. Chem.. Int. Ed. 2014, 53, 2730.
[14] Puls, F.; Knölker, H.-J. Angew. Chem.. Int. Ed. 2018, 57, 1222.
[15] (a) Narang, U.; Yadav, K. K.; Bhattacharya, S.; Chauhan. S. M. S. ChemistrySelect 2017, 2, 7135.
(b) Dou, Y.; Huang, X.; Wang, H.; Yang, L.; Li, H.; Yuan, B.; Yang, G. Green Chem. 2017, 19, 2491.
(c) Jiang, T.; Chen, S.-Y.; Zhang, G.-Y.; Zeng, R.-S.; Zou, J.-P. Org. Biomol. Chem. 2014, 12, 6922.
(d) Huang, H.; Ash, J.; Kang, J. Y. Org. Biomol. Chem. 2018, 16, 4236.
[16] (a) Bala, M.; Verma, P. K.; Sharma, U.; Kumar, N.; Singh, B. Green Chem. 2013, 15, 1687.
(b) Bala, M.; Verman, P. K.; Kumar, N.; Sharma, U.; Singh, B. Can. J. Chem. 2013, 91, 732.
[17] Gregorio, G. D.; Mari, M.; Bartoccini, F.; Piersanti, G. J. Org. Chem. 2017, 82, 8769.
[18] (a) Chen, M.; Zhang, M.; Xiong, B.; Tan, Z.; Lv, W.; Jiang, H. Org. Lett. 2014, 16, 6028.
(b) Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Green Chem. 2017, 19, 2945.
(c) Parua, S.; Sikari, R.; Sinha, S.; Chakraborty, G.; Mondal, R.; Paul, N. D. J. Org. Chem. 2018, 83, 11154.
[19] Wang, X.; Wang, C.; Liu, Y.; Xiao, J. Green Chem. 2016, 18, 4605.
[20] (a) Wan, X.-M.; Liu, Z.-L.; Liu, W.-Q; Cao, X.-N.; Zhu, X.; Zhao, X.-M.; Song, B.; Hao, X.-Q.; Liu, G. Tetrahedron 2019, 75.
(b) Chakraborty, G.; Sikari, R.; Das, S.; Mondal, R.; Sinha, S.; Banerjee, S.; Paul, N. D. J. Org. Chem. 2019, 84, 2626.
(c) Das, K.; Mondal, A.; Pal, D.; Srimani, D. Org. Lett. 2019, 21, 3223.
[21] (a) Nallagangu, M.; Sujatha, C.; Bhat, V.; Namitharan, K. Chem. Commun. 2019, 55, 8490.
(b) Das, D.; Sinha, S.; Samanta, D.; Mondal,R.; Chakraborty, G.; Brandao, P.; Paul, N. J. Org. Chem. 2019, 84, 10160.
[22] (a) Li, K.; Niu, J.-L.; Yang, M.-Z.; Li, Z.; Wu, L.-Y.; Hao, X.-Q.; Song, M.-P. Organometallics 2015, 34, 1170.
(b) Yang, F.-L.; Wang, Y.-H.; Ni, Y.-F.; Gao, X.; Song, B.; Zhu, X.; Hao, X.-Q. Eur. J. Org. Chem. 2017, 3481.
(c) Cao, X.-N.; Wan, X.-M.; Yang, F.-L.; Li, K.; Hao, X.-Q.; Shao, T.; Zhu, X.; Song, M.-P. J. Org. Chem. 2018, 83, 3657.
(d) Zhu, Z.-H.; Li, Y.; Wang, Y.-B.; Lan, Z.-G.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Organometallics 2019, 38, 2156.
[23] (a) Schultz, M. J.; Sigman, M. S. Tetrahedron 2006, 62, 8227.
(b) Kervinen, K.; Korpi, H.; Leskela, M.; Repo, T. J. Mol. Catal. A Chem. 2003, 203, 9.
Outlines

/