Selectfluor as “Fluorine-Free” Functional Reagent Applied to Organic Synthesis under Transition Metal-Free Conditions

  • Kong Yaolei ,
  • Sun Xiaotong ,
  • Weng Jianquan
Expand
  • College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2020-04-02

  Revised date: 2020-05-13

  Online published: 2020-06-13

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17C140003).

Abstract

Selectfluor, a commercial electrophilic fluorination reagent with superior performance, is widely used in fluorination reactions. In recent years, Selectfluor has also been widely applied as "fluorine-free" functional reagent in organic synthesis. Especially the application of Selectfluor/transition metals synergetic catalytic system has made great progress. However, this catalytic system has some disadvantages, such as the use of expensive transition metals and environmental unfriendliness. Therefore, more and more attention has been paid to the application of Selectfluor as "fluorine-free" functional reagent under transition metal-free conditions. In this paper, classified by the type of reactions, the research progress of Selectfluor as a "fluorine-free" functional reagent in organic synthesis under transition metal-free conditions is reviewed, and their future outlook is also discussed.

Cite this article

Kong Yaolei , Sun Xiaotong , Weng Jianquan . Selectfluor as “Fluorine-Free” Functional Reagent Applied to Organic Synthesis under Transition Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, 2020 , 40(9) : 2641 -2657 . DOI: 10.6023/cjoc202004005

References

[1] Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31.
[2] Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
[3] Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073.
[4] Huang, Y.-L.; Chen, Q. Chin. J. Org. Chem. 2017, 37, 2745(in Chinese). (黄昱霖, 陈迁, 有机化学, 2017, 37, 2745.)
[5] Tian, Y.; Zhou, G.; Zhao, X.; Dan, W. Acta Chim. Sinica 2018, 76, 962(in Chinese). (田亚伟, 周刚, 赵晓明, 淡文彦, 化学学报, 2018, 76, 962.)
[6] Hu, J.; Yang, Y.; Lou, Z.; Ni, C.; Hu, J. Chin. J. Chem. 2018, 36, 1202.
[7] Kandula, V.; Thota, P. K.; Mallesham, P.; Raghavulu, K.; Chatterjee, A.; Yennam, S.; Behera, M. Synlett 2019, 30, 2295.
[8] Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322.
[9] Stavber, S. Molecules 2011, 16, 6432.
[10] Yang, K.; Song, M.-J.; Ali, A. I. M.; Mudassir, S. M.; Ge, H.-B. Chem. Asian J. 2020, 15, 729.
[11] Brand, J. P.; Li, Y.; Waser, J. Isr. J. Chem. 2013, 53, 901.
[12] Miro, J.; Del Pozo, C. Chem. Rev. 2016, 116, 11924.
[13] Zhu, S.-F.; Chen, K. Synlett 2017, 28, 640.
[14] Xu, Q.; Gu, P.; Wang, F.-J.; Shi, M. Org. Chem. Front. 2015, 2, 1475.
[15] Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048.
[16] Fu, M.-L.; Liu, J.-B.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 3702.
[17] Zhang, J.; Wang, H.; Ren, S.-B.; Zhang, W.-X.; Liu, Y.-K. Chin. J. Org. Chem. 2015, 35, 2650(in Chinese). (张剑, 汪衡, 任少波, 张文霞, 刘运奎, 有机化学, 2015, 35, 2650.)
[18] Zheng, L.-M.; Shi, D.-D.; Bao, H.-Y.; Liu, Y.-K. Chin. J. Org. Chem. 2019, 39, 2821(in Chinese). (郑立孟, 施冬冬, 鲍汉扬, 刘运奎, 有机化学, 2019, 39, 2821.)
[19] Shi, D.-D.; Bao, H.-Y.; Xu, Z.; Liu, Y.-K. Chin. J. Org. Chem. 2017, 37, 1290(in Chinese). (施冬冬, 鲍汉扬, 徐峥, 刘运奎, 有机化学, 2017, 37, 1290.)
[20] Samanta, S.; Hajra, A. J. Org. Chem. 2019, 84, 4363.
[21] Kumaraswamy, G.; Gangadhar, M.; Ramesh, V.; Ankamma, K.; Sridhar, B. Org. Lett. 2019, 21, 6300.
[22] Daniels, M. H.; Hubbs, J. Tetrahedron Lett. 2011, 52, 3543.
[23] Liu, L.; Wang, J.-B.; Zhou, H.-W. J. Org. Chem. 2015, 80, 4749.
[24] Liang, X.-A.; Niu, L.-B.; Wang, S.-C.; Liu, J.-M.; Lei, A. Org. Lett. 2019, 21, 2441.
[25] Niu, L.-B.; Liu, J.-M.; Liang, X.-A.; Wang, S.-C.; Lei, A. Nat. Commun. 2019, 10, 467.
[26] Zhao, H.; Jin, J. Org. Lett. 2019, 21, 6179.
[27] Galloway, J. D.; Baxter, R. D. Tetrahedron 2019, 75, 130665.
[28] Shi, D.; Qin, H.-T.; Zhu, C.; Liu, F. Eur. J. Org. Chem. 2015, 2015, 5084.
[29] Lv, Y.-H.; Sun, K.; Pu, W.-Y.; Mao, S.-K.; Li, G.; Niu, J.-J.; Chen, Q.; Wang, T.-T. RSC Adv. 2016, 6, 93486.
[30] Sun, B.; Yin, S.; Zhuang, X.-H.; Jin, C.; Su, W.-K. Org. Biomol. Chem. 2018, 16, 6017.
[31] Yuan, J.-W.; Zeng, F.-L.; Mai, W.-P.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Wei, D.-H. Org. Biomol. Chem. 2019, 17, 5038.
[32] Yang, Z.; Chen, S.-W.; Yang, F.; Zhang, C.-X.; Dou, Y.; Zhou, Q.-J.; Yan, Y.-Z.; Tang, L. Eur. J. Org. Chem. 2019, 5998.
[33] Tang, L.; Yang, Z.; Yang, F.; Huang, Y.-F.; Chen, H.-F.; Cheng, H.; Song, W.-Y.; Ren, B.; Zhou, Q.-J. ChemistrySelect 2019, 4, 12053.
[34] Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034.
[35] Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Chem. Lett. 2008, 37, 652.
[36] Abonia, R.; Gutierrez, L. F.; Zwarycz, A. T.; Correa Smits, S.; Laali, K. K. Heteroat. Chem. 2019, 2019, 1.
[37] Wu, D.-Z.; Yang, X.-J.; Wu, L.-Q. J. Chem. Sci. 2012, 124, 901.
[38] Khazaei, A.; Rahmati, S.; Khalafi-nezhad, A.; Saednia, S. J. Fluorine Chem. 2012, 137, 123.
[39] Chen, Y.; Qi, H.-Y.; Chen, N.; Ren, D.-M.; Xu, J.-X.; Yang, Z.-H. J. Org. Chem. 2019, 84, 9044.
[40] Li, X.-F.; Fu, X.-L.; Huang, Y.-L.; Yan, Z.-Y. J. Chem. Res. 2018, 202.
[41] Huang, Y.-L.; Lei, J.-Y.; Fu, X.-L.; Xie, W.-L.; Li, X.-F. J. Chem. Res. 2019, 43, 179.
[42] Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.
[43] Yuan, J.-W.; Zhu, J.-L.; Li, B.; Yang, L.-Y.; Mao, P.; Zhang, S.-R.; Li, Y.-C.; Qu, L.-B. Org. Biomol. Chem. 2019, 17, 10178.
[44] Chen, Q.; Zeng, J.-K.; Yan, X.-X.; Huang, Y.-L.; Wen, C.-X.; Liu, X.-G.; Zhang, K. J. Org. Chem. 2016, 81, 10043.
[45] Yang, K.; Zhang, H.; Niu, B.; Tang, T.-D.; Ge, H.-B. Eur. J. Org. Chem. 2018, 2018, 5520.
[46] Mai, W.-P.; Yuan, J.-W.; Zhu, J.-L.; Li, Q.-Q.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. ChemistrySelect 2019, 4, 11066.
[47] Zupan, M.; Iskra, J.; Stavber, S. Tetrahedron Lett. 1997, 38, 6305.
[48] Chiappe, C.; Pieraccini, D. ARKIVOC 2002, 249.
[49] Stavber, S.; Jereb, M.; Zupan, M. Chem. Commun. 2002, 488.
[50] Jereb, M.; Stavber, S.; Zupan, M. Tetrahedron 2003, 59, 5935.
[51] Ye, C.-F.; Shreeve, J. M. J. Org. Chem. 2004, 69, 8561.
[52] Pavlinac, J.; Zupan, M.; Stavber, S. J. Org. Chem. 2006, 71, 1027.
[53] Krow, G. R.; Gandla, D.; Guo, W. W.; Centafont, R. A.; Lin, G. L.; DeBrosse, C.; Sonnet, P. E.; Ross, C. W.; Ramjit, H. G.; Cannon, K. C. J. Org. Chem. 2008, 73, 2122.
[54] Khupse, R. S.; Erhardt, P. W. Org. Lett. 2008, 10, 5007.
[55] Mal, D.; De, S. R. Org. Lett. 2009, 11, 4398.
[56] Laali, K. K.; Nandi, G. C.; Bunge, S. D. Tetrahedron Lett. 2014, 55, 2401.
[57] Shi, L.-L.; Zhang, D.-M.; Lin, R.-Y.; Zhang, C.; Li, X.; Jiao, N. Tetrahedron Lett. 2014, 55, 2243.
[58] Dannenberg, C. A.; Bizet, V.; Zou, L.-H.; Bolm, C. Eur. J. Org. Chem. 2015, 2015, 77.
[59] Liang, D.-Q.; Li, X.-G.; Wang, C.-W.; Dong, Q.-S.; Wang, B.-L.; Wang, H. Tetrahedron Lett. 2016, 57, 5390.
[60] Huang, B.-B.; Zhao, Y.-T.; Yang, C.; Gao, Y.; Xia, W.-J. Org. Lett. 2017, 19, 3799.
[61] Qi, H.; Li, X.; Liu, Z.; Miao, S.-S.; Fang, Z.; Chen, L.; Fang, Z.; Guo, K. ChemistrySelect 2018, 3, 10689.
[62] Scheidt, F.; Neufeld, J.; Schafer, M.; Thiehoff, C.; Gilmour, R. Org. Lett. 2018, 20, 8073.
[63] Sarie, J. C.; Neufeld, J.; Daniliuc, C. G.; Gilmour, R. ACS Catal. 2019, 9, 7232.
[64] Hu, J.; Zhou, G.; Tian, Y.-W.; Zhao, X.-M. Org. Biomol. Chem. 2019, 17, 6342.
[65] Blank, S. J.; Stephens, C. E. Tetrahedron Lett. 2006, 47, 6849.
[66] Kirihara, M.; Naito, S.; Ishizuka, Y.; Hanai, H.; Noguchi, T. Tetrahedron Lett. 2011, 52, 3086.
[67] Wu, D.-G.; Zhang, J.; Wang, H.; Zhang, J.-H.; Liu, Y.-K.; Liu, M.-C. Asian J. Org. Chem. 2014, 3, 1163.
[68] Wang, H.; Ren, S.-B.; Zhang, J.; Zhang, W.; Liu, Y.-K. J. Org. Chem. 2015, 80, 6856.
[69] Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. Tetrahedron 2014, 70, 7505.
[70] Lv, Y.-H.; Wang, X.; Cui, H.; Sun, K.; Pu, W.-Y.; Li, G.; Wu, Y.-T.; He, J.-L.; Ren, X.-R. RSC Adv. 2016, 6, 74917.
[71] Allmann, T. C.; Moldovan, R. P.; Jones, P. G.; Lindel, T. Chem. Eur. J. 2016, 22, 111.
[72] Chen, Q.; Zeng, J.-K.; Yan, X.-X,; Huang, Y.-L.; Du, Z.-Y.; Zhang, K.; Wen, C.-X. Tetrahedron Lett. 2016, 57, 3379.
[73] Bohlmann, R.; Hauser, A. Synlett 2016, 27, 1870.
[74] Jiang, X.-J.; Yang, J.-J.; Zhang, F.; Yu, P.; Yi, P.; Sun, Y.-W.; Wang, Y.-Q. Org. Lett. 2016, 18, 3154.
[75] Xie, L.-Y.; Peng, S.; Liu, F.; Yi, J.-Y.; Wang, M.; Tang, Z.; Xu, X.; He, W.-M. Adv. Synth. Catal. 2018, 360, 4259.
[76] Shah, S. T. A.; Singh, S.; Guiry, P. J. J. Org. Chem. 2009, 74, 2179.
[77] Xie, L.-J.; Wang, R.-L.; Wang, D.; Liu, L.; Cheng, L. Chem. Commun. 2017, 53, 10734.
[78] Wang, S.-C.; Liu, J.-M.; Niu, L.-B.; Yi, H.; Chiang, C.-W.; Lei, A. J. Photochem. Photobiol., A 2018, 355, 120.
[79] Zeng, Y.-J.; Duan, Y.; Zhao, H.; Hu, X.-G. Chin. J. Org. Chem. 2018, 38, 1712(in Chinese). (曾逸杰, 段岳, 赵辉, 胡祥国, 有机化学, 2018, 38, 1712.)
[80] Yadav, J. S.; Reddy, B. V. S.; Sunitha, V.; Reddy, K. S. Adv. Synth. Catal. 2003, 345, 1203.
[81] Kumar, B. S.; Reddy, Y. T.; Reddy, P. N.; Kumar, P. S.; Rajitha, B. J. Heterocyclic Chem. 2006, 43, 477.
[82] Ranjbar-Karimi, R.; Hashemi-Uderji, S.; Mousavi, M. J. Iran. Chem. Soc. 2011, 8, 193.
[83] Heravi, M. R. P. J. Iran. Chem. Soc. 2009, 6, 483.
[84] Ye, W.-M.; Li, W.-B.; Zhang, J.-L. Chem. Commun. 2014, 50, 9879.
[85] Wei, D.-L.; Li, Y.-R.; Liang, F.-S. Adv. Synth. Catal. 2016, 358, 3887.
[86] Yan, D.-M.; Zhao, Q.-Q.; Rao, L.; Chen, J.-R.; Xiao, W.-J. Chem. Eur. J. 2018, 24, 16895.
[87] Gao, Y.-J.; Hider, R. C.; Ma, Y.-M. RSC Adv. 2019, 9, 10340.
[88] Chen, J.; Ding, Y.-X.; Gao, Y.-J.; Zhou, D.-H.; Hider, R.; Ma, Y.-M. Chemistryselect 2019, 4, 2404.
[89] He, G.-K.; Li, Y.; Yu, Z.-L.; Chen, Z.-Q.; Tang, Y.-M.; Song, G.-L.; Loh, T. P. Org. Chem. Front. 2019, 6, 3644.
[90] Wu, F.; Alom, N. E.; Ariyarathna, J. P.; Nass, J.; Li, W. Angew. Chem.. Int. Ed. 2019, 58, 11676.
[91] Liu, J.-J.; Wong, C.-H. Tetrahedron Lett. 2002, 43, 3915.
[92] Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S. Tetrahedron Lett. 2004, 45, 1291.
[93] Shinu, V. S.; Sheeja, B.; Purushothaman, E.; Bahulayan, D. Tetrahedron Lett. 2009, 50, 4838.
[94] Sun, K.; Zhu, Z.-H.; Sun, J.-J.; Liu, L.-L.; Wang, X. J. Org. Chem. 2016, 81, 1476.
[95] Muñiz, K.; Wöste, T. Synthesis 2016, 48, 816.
[96] Rezayati, S.; Hajinasiri, R.; Erfani, Z. Res. Chem. Intermed. 2016, 42, 2567.
[97] Yan, M.; Zhou, D.-H.; Gao, Y.-J.; Ma, Y.-M. ChemistrySelect 2018, 3, 13006.
[98] Cao, Y.; Zhou, D.-H.; Ma, Y.-M. Can. J. Chem. 2019, 97, 37.
[99] Gao, Y.-J.; Zhou, D.-H.; Ma, Y.-M. ChemistrySelect 2018, 3, 9374.
[100] Sharma, P.; Sharma, R. K. Chirality 2019, 31, 91.
[101] Yang, K.; Li, Y.; Ma, Z.-Y.; Tang, L.; Yin, Y.; Zhang, H.; Li, Z.-Y.; Sun, X.-Q. Eur. J. Org. Chem. 2019, 2019, 5812.
[102] Bao, H.-Y.; Hu, X.-J.; Zhang, J.; Liu, Y.-K. Tetrahedron 2019, 75, 130533.
[103] Yang, K.; Niu, B.; Ma, Z.-Y.; Wang, H.; Lawrence, B.; Ge, H.-B. J. Org. Chem. 2019, 84, 14045.
[104] Xu, W.-X.; Dai, X.-Q.; Xu, H.-J.; Weng, J.-Q. Chin. J. Org. Chem. 2018, 38, 2807(in Chinese). (徐雯秀, 戴小强, 徐涵靖, 翁建全, 有机化学, 2018, 38, 2807.)
[105] Kong, Y.-L.; Xu, W.-X.; Ye, F.-X.; Weng, J.-Q. Chin. J. Org. Chem. 2019, 39, 3065(in Chinese). (孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.)
[106] Tréguier, B.; Roche, S. P. Org. Lett. 2014, 16, 278.
[107] Liang, D.-Q.; Li, X.-G.; Lan, Q.; Huang, W.-Z.; Yuan, L.; Ma, Y.-H. Tetrahedron Lett. 2016, 57, 2207.
[108] Liang, D.-Q.; Li, Y.-N.; Gao, S.-L.; Li, R.-L.; Li, X.-G.; Wang, B.-L.; Yang, H. Green Chem. 2017, 19, 3344.
Outlines

/