Chinese Journal of Organic Chemistry ›› 2020, Vol. 40 ›› Issue (9): 2641-2657.DOI: 10.6023/cjoc202004005 Previous Articles Next Articles
孔瑶蕾, 孙晓彤, 翁建全
收稿日期:
2020-04-02
修回日期:
2020-05-13
发布日期:
2020-06-13
通讯作者:
翁建全
E-mail:jqweng@zjut.edu.cn
基金资助:
Kong Yaolei, Sun Xiaotong, Weng Jianquan
Received:
2020-04-02
Revised:
2020-05-13
Published:
2020-06-13
Supported by:
Share
Kong Yaolei, Sun Xiaotong, Weng Jianquan. Selectfluor as “Fluorine-Free” Functional Reagent Applied to Organic Synthesis under Transition Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2641-2657.
[1] Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31. [2] Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612. [3] Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073. [4] Huang, Y.-L.; Chen, Q. Chin. J. Org. Chem. 2017, 37, 2745(in Chinese). (黄昱霖, 陈迁, 有机化学, 2017, 37, 2745.) [5] Tian, Y.; Zhou, G.; Zhao, X.; Dan, W. Acta Chim. Sinica 2018, 76, 962(in Chinese). (田亚伟, 周刚, 赵晓明, 淡文彦, 化学学报, 2018, 76, 962.) [6] Hu, J.; Yang, Y.; Lou, Z.; Ni, C.; Hu, J. Chin. J. Chem. 2018, 36, 1202. [7] Kandula, V.; Thota, P. K.; Mallesham, P.; Raghavulu, K.; Chatterjee, A.; Yennam, S.; Behera, M. Synlett 2019, 30, 2295. [8] Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322. [9] Stavber, S. Molecules 2011, 16, 6432. [10] Yang, K.; Song, M.-J.; Ali, A. I. M.; Mudassir, S. M.; Ge, H.-B. Chem. Asian J. 2020, 15, 729. [11] Brand, J. P.; Li, Y.; Waser, J. Isr. J. Chem. 2013, 53, 901. [12] Miro, J.; Del Pozo, C. Chem. Rev. 2016, 116, 11924. [13] Zhu, S.-F.; Chen, K. Synlett 2017, 28, 640. [14] Xu, Q.; Gu, P.; Wang, F.-J.; Shi, M. Org. Chem. Front. 2015, 2, 1475. [15] Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048. [16] Fu, M.-L.; Liu, J.-B.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 3702. [17] Zhang, J.; Wang, H.; Ren, S.-B.; Zhang, W.-X.; Liu, Y.-K. Chin. J. Org. Chem. 2015, 35, 2650(in Chinese). (张剑, 汪衡, 任少波, 张文霞, 刘运奎, 有机化学, 2015, 35, 2650.) [18] Zheng, L.-M.; Shi, D.-D.; Bao, H.-Y.; Liu, Y.-K. Chin. J. Org. Chem. 2019, 39, 2821(in Chinese). (郑立孟, 施冬冬, 鲍汉扬, 刘运奎, 有机化学, 2019, 39, 2821.) [19] Shi, D.-D.; Bao, H.-Y.; Xu, Z.; Liu, Y.-K. Chin. J. Org. Chem. 2017, 37, 1290(in Chinese). (施冬冬, 鲍汉扬, 徐峥, 刘运奎, 有机化学, 2017, 37, 1290.) [20] Samanta, S.; Hajra, A. J. Org. Chem. 2019, 84, 4363. [21] Kumaraswamy, G.; Gangadhar, M.; Ramesh, V.; Ankamma, K.; Sridhar, B. Org. Lett. 2019, 21, 6300. [22] Daniels, M. H.; Hubbs, J. Tetrahedron Lett. 2011, 52, 3543. [23] Liu, L.; Wang, J.-B.; Zhou, H.-W. J. Org. Chem. 2015, 80, 4749. [24] Liang, X.-A.; Niu, L.-B.; Wang, S.-C.; Liu, J.-M.; Lei, A. Org. Lett. 2019, 21, 2441. [25] Niu, L.-B.; Liu, J.-M.; Liang, X.-A.; Wang, S.-C.; Lei, A. Nat. Commun. 2019, 10, 467. [26] Zhao, H.; Jin, J. Org. Lett. 2019, 21, 6179. [27] Galloway, J. D.; Baxter, R. D. Tetrahedron 2019, 75, 130665. [28] Shi, D.; Qin, H.-T.; Zhu, C.; Liu, F. Eur. J. Org. Chem. 2015, 2015, 5084. [29] Lv, Y.-H.; Sun, K.; Pu, W.-Y.; Mao, S.-K.; Li, G.; Niu, J.-J.; Chen, Q.; Wang, T.-T. RSC Adv. 2016, 6, 93486. [30] Sun, B.; Yin, S.; Zhuang, X.-H.; Jin, C.; Su, W.-K. Org. Biomol. Chem. 2018, 16, 6017. [31] Yuan, J.-W.; Zeng, F.-L.; Mai, W.-P.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Wei, D.-H. Org. Biomol. Chem. 2019, 17, 5038. [32] Yang, Z.; Chen, S.-W.; Yang, F.; Zhang, C.-X.; Dou, Y.; Zhou, Q.-J.; Yan, Y.-Z.; Tang, L. Eur. J. Org. Chem. 2019, 5998. [33] Tang, L.; Yang, Z.; Yang, F.; Huang, Y.-F.; Chen, H.-F.; Cheng, H.; Song, W.-Y.; Ren, B.; Zhou, Q.-J. ChemistrySelect 2019, 4, 12053. [34] Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034. [35] Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Chem. Lett. 2008, 37, 652. [36] Abonia, R.; Gutierrez, L. F.; Zwarycz, A. T.; Correa Smits, S.; Laali, K. K. Heteroat. Chem. 2019, 2019, 1. [37] Wu, D.-Z.; Yang, X.-J.; Wu, L.-Q. J. Chem. Sci. 2012, 124, 901. [38] Khazaei, A.; Rahmati, S.; Khalafi-nezhad, A.; Saednia, S. J. Fluorine Chem. 2012, 137, 123. [39] Chen, Y.; Qi, H.-Y.; Chen, N.; Ren, D.-M.; Xu, J.-X.; Yang, Z.-H. J. Org. Chem. 2019, 84, 9044. [40] Li, X.-F.; Fu, X.-L.; Huang, Y.-L.; Yan, Z.-Y. J. Chem. Res. 2018, 202. [41] Huang, Y.-L.; Lei, J.-Y.; Fu, X.-L.; Xie, W.-L.; Li, X.-F. J. Chem. Res. 2019, 43, 179. [42] Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760. [43] Yuan, J.-W.; Zhu, J.-L.; Li, B.; Yang, L.-Y.; Mao, P.; Zhang, S.-R.; Li, Y.-C.; Qu, L.-B. Org. Biomol. Chem. 2019, 17, 10178. [44] Chen, Q.; Zeng, J.-K.; Yan, X.-X.; Huang, Y.-L.; Wen, C.-X.; Liu, X.-G.; Zhang, K. J. Org. Chem. 2016, 81, 10043. [45] Yang, K.; Zhang, H.; Niu, B.; Tang, T.-D.; Ge, H.-B. Eur. J. Org. Chem. 2018, 2018, 5520. [46] Mai, W.-P.; Yuan, J.-W.; Zhu, J.-L.; Li, Q.-Q.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. ChemistrySelect 2019, 4, 11066. [47] Zupan, M.; Iskra, J.; Stavber, S. Tetrahedron Lett. 1997, 38, 6305. [48] Chiappe, C.; Pieraccini, D. ARKIVOC 2002, 249. [49] Stavber, S.; Jereb, M.; Zupan, M. Chem. Commun. 2002, 488. [50] Jereb, M.; Stavber, S.; Zupan, M. Tetrahedron 2003, 59, 5935. [51] Ye, C.-F.; Shreeve, J. M. J. Org. Chem. 2004, 69, 8561. [52] Pavlinac, J.; Zupan, M.; Stavber, S. J. Org. Chem. 2006, 71, 1027. [53] Krow, G. R.; Gandla, D.; Guo, W. W.; Centafont, R. A.; Lin, G. L.; DeBrosse, C.; Sonnet, P. E.; Ross, C. W.; Ramjit, H. G.; Cannon, K. C. J. Org. Chem. 2008, 73, 2122. [54] Khupse, R. S.; Erhardt, P. W. Org. Lett. 2008, 10, 5007. [55] Mal, D.; De, S. R. Org. Lett. 2009, 11, 4398. [56] Laali, K. K.; Nandi, G. C.; Bunge, S. D. Tetrahedron Lett. 2014, 55, 2401. [57] Shi, L.-L.; Zhang, D.-M.; Lin, R.-Y.; Zhang, C.; Li, X.; Jiao, N. Tetrahedron Lett. 2014, 55, 2243. [58] Dannenberg, C. A.; Bizet, V.; Zou, L.-H.; Bolm, C. Eur. J. Org. Chem. 2015, 2015, 77. [59] Liang, D.-Q.; Li, X.-G.; Wang, C.-W.; Dong, Q.-S.; Wang, B.-L.; Wang, H. Tetrahedron Lett. 2016, 57, 5390. [60] Huang, B.-B.; Zhao, Y.-T.; Yang, C.; Gao, Y.; Xia, W.-J. Org. Lett. 2017, 19, 3799. [61] Qi, H.; Li, X.; Liu, Z.; Miao, S.-S.; Fang, Z.; Chen, L.; Fang, Z.; Guo, K. ChemistrySelect 2018, 3, 10689. [62] Scheidt, F.; Neufeld, J.; Schafer, M.; Thiehoff, C.; Gilmour, R. Org. Lett. 2018, 20, 8073. [63] Sarie, J. C.; Neufeld, J.; Daniliuc, C. G.; Gilmour, R. ACS Catal. 2019, 9, 7232. [64] Hu, J.; Zhou, G.; Tian, Y.-W.; Zhao, X.-M. Org. Biomol. Chem. 2019, 17, 6342. [65] Blank, S. J.; Stephens, C. E. Tetrahedron Lett. 2006, 47, 6849. [66] Kirihara, M.; Naito, S.; Ishizuka, Y.; Hanai, H.; Noguchi, T. Tetrahedron Lett. 2011, 52, 3086. [67] Wu, D.-G.; Zhang, J.; Wang, H.; Zhang, J.-H.; Liu, Y.-K.; Liu, M.-C. Asian J. Org. Chem. 2014, 3, 1163. [68] Wang, H.; Ren, S.-B.; Zhang, J.; Zhang, W.; Liu, Y.-K. J. Org. Chem. 2015, 80, 6856. [69] Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. Tetrahedron 2014, 70, 7505. [70] Lv, Y.-H.; Wang, X.; Cui, H.; Sun, K.; Pu, W.-Y.; Li, G.; Wu, Y.-T.; He, J.-L.; Ren, X.-R. RSC Adv. 2016, 6, 74917. [71] Allmann, T. C.; Moldovan, R. P.; Jones, P. G.; Lindel, T. Chem. Eur. J. 2016, 22, 111. [72] Chen, Q.; Zeng, J.-K.; Yan, X.-X,; Huang, Y.-L.; Du, Z.-Y.; Zhang, K.; Wen, C.-X. Tetrahedron Lett. 2016, 57, 3379. [73] Bohlmann, R.; Hauser, A. Synlett 2016, 27, 1870. [74] Jiang, X.-J.; Yang, J.-J.; Zhang, F.; Yu, P.; Yi, P.; Sun, Y.-W.; Wang, Y.-Q. Org. Lett. 2016, 18, 3154. [75] Xie, L.-Y.; Peng, S.; Liu, F.; Yi, J.-Y.; Wang, M.; Tang, Z.; Xu, X.; He, W.-M. Adv. Synth. Catal. 2018, 360, 4259. [76] Shah, S. T. A.; Singh, S.; Guiry, P. J. J. Org. Chem. 2009, 74, 2179. [77] Xie, L.-J.; Wang, R.-L.; Wang, D.; Liu, L.; Cheng, L. Chem. Commun. 2017, 53, 10734. [78] Wang, S.-C.; Liu, J.-M.; Niu, L.-B.; Yi, H.; Chiang, C.-W.; Lei, A. J. Photochem. Photobiol., A 2018, 355, 120. [79] Zeng, Y.-J.; Duan, Y.; Zhao, H.; Hu, X.-G. Chin. J. Org. Chem. 2018, 38, 1712(in Chinese). (曾逸杰, 段岳, 赵辉, 胡祥国, 有机化学, 2018, 38, 1712.) [80] Yadav, J. S.; Reddy, B. V. S.; Sunitha, V.; Reddy, K. S. Adv. Synth. Catal. 2003, 345, 1203. [81] Kumar, B. S.; Reddy, Y. T.; Reddy, P. N.; Kumar, P. S.; Rajitha, B. J. Heterocyclic Chem. 2006, 43, 477. [82] Ranjbar-Karimi, R.; Hashemi-Uderji, S.; Mousavi, M. J. Iran. Chem. Soc. 2011, 8, 193. [83] Heravi, M. R. P. J. Iran. Chem. Soc. 2009, 6, 483. [84] Ye, W.-M.; Li, W.-B.; Zhang, J.-L. Chem. Commun. 2014, 50, 9879. [85] Wei, D.-L.; Li, Y.-R.; Liang, F.-S. Adv. Synth. Catal. 2016, 358, 3887. [86] Yan, D.-M.; Zhao, Q.-Q.; Rao, L.; Chen, J.-R.; Xiao, W.-J. Chem. Eur. J. 2018, 24, 16895. [87] Gao, Y.-J.; Hider, R. C.; Ma, Y.-M. RSC Adv. 2019, 9, 10340. [88] Chen, J.; Ding, Y.-X.; Gao, Y.-J.; Zhou, D.-H.; Hider, R.; Ma, Y.-M. Chemistryselect 2019, 4, 2404. [89] He, G.-K.; Li, Y.; Yu, Z.-L.; Chen, Z.-Q.; Tang, Y.-M.; Song, G.-L.; Loh, T. P. Org. Chem. Front. 2019, 6, 3644. [90] Wu, F.; Alom, N. E.; Ariyarathna, J. P.; Nass, J.; Li, W. Angew. Chem.. Int. Ed. 2019, 58, 11676. [91] Liu, J.-J.; Wong, C.-H. Tetrahedron Lett. 2002, 43, 3915. [92] Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S. Tetrahedron Lett. 2004, 45, 1291. [93] Shinu, V. S.; Sheeja, B.; Purushothaman, E.; Bahulayan, D. Tetrahedron Lett. 2009, 50, 4838. [94] Sun, K.; Zhu, Z.-H.; Sun, J.-J.; Liu, L.-L.; Wang, X. J. Org. Chem. 2016, 81, 1476. [95] Muñiz, K.; Wöste, T. Synthesis 2016, 48, 816. [96] Rezayati, S.; Hajinasiri, R.; Erfani, Z. Res. Chem. Intermed. 2016, 42, 2567. [97] Yan, M.; Zhou, D.-H.; Gao, Y.-J.; Ma, Y.-M. ChemistrySelect 2018, 3, 13006. [98] Cao, Y.; Zhou, D.-H.; Ma, Y.-M. Can. J. Chem. 2019, 97, 37. [99] Gao, Y.-J.; Zhou, D.-H.; Ma, Y.-M. ChemistrySelect 2018, 3, 9374. [100] Sharma, P.; Sharma, R. K. Chirality 2019, 31, 91. [101] Yang, K.; Li, Y.; Ma, Z.-Y.; Tang, L.; Yin, Y.; Zhang, H.; Li, Z.-Y.; Sun, X.-Q. Eur. J. Org. Chem. 2019, 2019, 5812. [102] Bao, H.-Y.; Hu, X.-J.; Zhang, J.; Liu, Y.-K. Tetrahedron 2019, 75, 130533. [103] Yang, K.; Niu, B.; Ma, Z.-Y.; Wang, H.; Lawrence, B.; Ge, H.-B. J. Org. Chem. 2019, 84, 14045. [104] Xu, W.-X.; Dai, X.-Q.; Xu, H.-J.; Weng, J.-Q. Chin. J. Org. Chem. 2018, 38, 2807(in Chinese). (徐雯秀, 戴小强, 徐涵靖, 翁建全, 有机化学, 2018, 38, 2807.) [105] Kong, Y.-L.; Xu, W.-X.; Ye, F.-X.; Weng, J.-Q. Chin. J. Org. Chem. 2019, 39, 3065(in Chinese). (孔瑶蕾, 徐雯秀, 叶飞霞, 翁建全, 有机化学, 2019, 39, 3065.) [106] Tréguier, B.; Roche, S. P. Org. Lett. 2014, 16, 278. [107] Liang, D.-Q.; Li, X.-G.; Lan, Q.; Huang, W.-Z.; Yuan, L.; Ma, Y.-H. Tetrahedron Lett. 2016, 57, 2207. [108] Liang, D.-Q.; Li, Y.-N.; Gao, S.-L.; Li, R.-L.; Li, X.-G.; Wang, B.-L.; Yang, H. Green Chem. 2017, 19, 3344. |
[1] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[2] | Jie Liu, Feng Han, Shuangyan Li, Tianyu Chen, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic Olefination of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 573-583. |
[3] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[4] | Ran Zhou, Chunmei Yuan, Tao Zhang, Piao Mao, Yi Liu, Kaini Meng, Hui Xin, Wei Xue. Design, Synthesis and Bioactivity of Chalcone Derivative Containing Quinazolinone [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3196-3209. |
[5] | Zhongrong Xu, Jieping Wan, Yunyun Liu. Transition Metal-Free C—H Thiocyanation and Selenocyanation Based on Thermochemical, Photocatalytic and Electrochemical Process [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2425-2446. |
[6] | Jiao Qin, Jie Chen, Yan Su. Synthesis of 2,2,6,6-Tetramethylpiperidin-1-yl-2-(2-cyanophenyl)-acetate by Transition Metal-Free Radical Cleavage Reaction from α-Bromoindanone [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2171-2177. |
[7] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[8] | Qian Dou, Taimin Wang, Lijing Fang, Hongbin Zhai, Bin Cheng. Recent Development of Photoinduced Iron-Catalysis in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1386-1415. |
[9] | Shiquan Gao, Chuangjun Liu, Junfeng Yang, Junliang Zhang. Cobalt-Catalyzed Electrochemical Reductive Coupling of Alkynes and Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1559-1565. |
[10] | Linsheng Bai, Peng Hong, Anguo Ying. Research Progress of Functional Polyacrylonitrile Fiber in Promoting Organic Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1241-1270. |
[11] | Baichuan Mo, Chunxia Chen, Jinsong Peng. Research Progress in Application of Lignin and Its Derivatives Supported Metal Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1215-1240. |
[12] | Biao Ma, Miaomiao Zhang, Zhanyu Li, Jinsong Peng, Chunxia Chen. Recent Advance of Transition Metal-Free Catalyzed Suzuki-Type Cross Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 455-470. |
[13] | Jing Sun, Mengmeng Zhang, Xiaolong Guo, Qi Wang, Luyao Wang. Synthesis of Diaryl Selenium Compounds without Transition-Metal Catalyst [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4251-4260. |
[14] | Silin Chen, Yunhui Yang, Chao Chen, Congyang Wang. Advances in Transition-Metal-Catalyzed Keto Carbonyl-Directed C—H Bond Functionalization Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 1-16. |
[15] | Tianyu Chen, Feng Han, Shuangyan Li, Jianping Liu, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic C-Alkylation of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2914-2924. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||