Recent Advance in Development and Application of Electrophilic Difluoromethylating Reagents

  • Qin Wenbing ,
  • Chen Jiayi ,
  • Xiong Wei ,
  • Liu Guokai
Expand
  • School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060

Received date: 2020-05-07

  Revised date: 2020-06-10

  Online published: 2020-06-28

Supported by

Project supported by the Natural Science Foundation of Shenzhen City (Nos. KQJSCX20180328095508144) and the Natural Science Foundation of Guangdong Province (No. 2020A1515010874).

Abstract

In the past two decades, the development and application of bench-stable electrophilic difluoromethylating reagents have attracted considerable attention. Consequently, some progress in this area has been ongoing recently. Electrophilic difluoromethylating reagents play a very important role in the synthesis of fluorine-containing compounds, due to their capability of readily transferring difluoromethyl moiety (CF2H) into wide range of nucleophiles, as well as being used as difluoromethyl radical(•CF2H) precursorfor radical difluoromethylations. However, the electrophilic difluoromethylating reagents and application therein remain still underdeveloped in comparison with nucleophilic ones. The research advance in electrophilic difluoromethylating reagents in past two decades is reviewed.

Cite this article

Qin Wenbing , Chen Jiayi , Xiong Wei , Liu Guokai . Recent Advance in Development and Application of Electrophilic Difluoromethylating Reagents[J]. Chinese Journal of Organic Chemistry, 2020 , 40(10) : 3177 -3195 . DOI: 10.6023/cjoc202005016

References

[1] (a) Smart, B. E. Chem. Rev. 1996, 96, 1555.
(b) Jeschke, P.; Baston, E.; Leroux, F. R. Mini-Rev. Med. Chem. 2007, 7, 1027 and references therein.
(c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(e) Bassetto, M.; Ferla, S.; Pertusati, F. Future Med. Chem. 2015, 7, 527.
[2] (a) Goure, W. F.; Leschinsky, K. L.; Wratten, S. J.; Chupp, J. P. J. Agric. Food Chem. 1991, 39, 981.
(b) Pérez, R. A.; Sánchez-Brunete, C.; Miguel, E.; Tadeo, J. L. J. Agric. Food Chem. 1998, 46, 1864.
(c) Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, 2013.
[3] (a) Kirsch, P.; Bremer, B. Angew. Chem., Int. Ed. 2000, 39, 4216.
(b) Tasaka, T.; Takenaka, S.; Kabu, K.; Morita, Y.; Okamoto, H. Ferroelectronics 2002, 276, 83.
(c) Boltalina, O. V.; Nakajima, T. New Fluorinated Carbons:Fundamentals and Applications, Elsevier, Amsterdam, 2016.
[4] (a) Bégué, J. P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley-VCH, Weinheim, 2008.
(b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
(c) Gouverneur, V.; Muller, K. Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
[5] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Purse, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(d) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305.
(e) Prakash, G. K. S.; Wang, F. Chim. Oggi 2012, 30, 30.
(f) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785(in Chinese). (王江, 柳红, 有机化学, 2011, 31, 1785.)
[6] For selected reviews on perfluoroalkylation reactions, see:(a) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 9322.
(b) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(c) Wu, X.-F.; Neumann, H.; Beller, M. Chem.-Asian J. 2012, 7, 1744.
(d) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 5048.
(e) Ye, Y.; Sanford, M. S. Synlett 2012, 2005.
(f) Qing, F.-L. Chin. J. Org. Chem. 2012, 32, 815(in Chinese). (卿凤翎, 有机化学, 2012, 32, 815.)
(g) Pan, F.; Shi, Z. Acta Chim. Sinica, 2012, 70, 1679(in Chinese). (潘菲, 施章杰, 化学学报, 2012, 70, 1679.)
(h) Wang, X.; Zhang, Y.; Wang, J. Sci. Sin. Chim. 2012, 42, 1417. (王兮, 张艳, 王剑波, 中国科学:化学, 2012, 42, 1417.)
(i) Chen, P.; Liu, G. Synthesis 2013, 45, 2929.
(j) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(k) Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585.
(l) Wang, G.; He, X.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2014, 34, 837(in Chinese). (王光祖, 赫侠平, 戴建军, 许华建, 有机化学, 2014, 34, 837.)
(m) Zhang, J.; Jin, C.; Zhang, Y. Chin. J. Org. Chem. 2014, 34, 662(in Chinese). (张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.)
(n) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
(o) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
[7] (a) Prakash, G. K. S.; Mandal, M.; Schweizer, S.; Petasis, N. A.; Olah, G. A. J. Org. Chem. 2002, 67, 3718.
(b) Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.; Colarusso, S.; Steinkhler, C.; Brunetti, M.; Altamura, S.; De Francesco, R.; Matassa, V. G. Bioorg. Med. Chem. Lett. 2002, 12, 701.
(c) Hu, J.; Zhang, W.; Wang. F. Chem. Commun. 2009, 7465.
[8] (a) Li, Y.; Hu, J. Angew. Chem., Int. Ed. 2005, 44, 5882.
(b) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863.
[9] (a) Cazzola, M.; Picciolo, S.; Matera, M. G. Expert Opin. Pharmacother. 2010, 11, 441.
(b) Kohl, B.; Sturm, E.; Rainer, G. US 4758579A, 1985.
(c) Gajjar, D. A.; Bello, A.; Ge, Z.; Christopher, L.; Grasela, D. M. Antimicrob. Agents Chemother. 2003, 47, 2256.
(d) Kastron, V. V.; Vitolin, R. O.; Fialkov, J. A.; Shelyazhenko, S. V. US 4219653, 1980.
[10] (a) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585.
(b) Dolbier, W. R. Jr.; Battiste, M. A. Chem. Rev. 2003, 103, 1071.
(c) Fedoryński, M. Chem. Rev. 2003, 103, 1099.
(d) Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868.
(e) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921.
(f) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.
(g) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536.
(h) Bizet, V.; Kowalczyk, R.; Bolm, C. Chem. Soc. Rev. 2014, 43, 2426.
(i) Ni, C.; Hu, J. Synthesis 2014, 46, 0842.
(j) Shen, X.; Hu, J. Eur. J. Org. Chem. 2014, 4437.
(k) Belhomme, M.-C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem.-Eur. J. 2015, 21, 12836.
(l) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Org. Biomol. Chem. 2015, 13, 11153.
(m) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(n) Ni, C.; Zhu, L.; Hu, J. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
(o) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.
(p) Koike, T.; Akita, M. Chem 2018, 4, 409.
(q) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem.-Eur. J. 2017, 23, 14676.
(r) Rong, J.; Ni, C.; Hu, J. Asian J. Org. Chem. 2017, 6, 139.
(s) Dilman, A. D.; Levin, V. V. Acc. Chem. Res. 2018, 51, 1272.
(t) Lemos, A.; Lemaire, C.; Luxen, A. Adv. Synth. Catal. 2019, 361, 1500.
(u) Koike, T.; Akita, M. Org. Biomol. Chem. 2019, 17, 5413.
(v) Wang, X.; Wang, X.; Wang, J. Tetrahedron 2019, 75, 949.
(w) Xie, Q.; Hu, J. Chin. J. Chem. 2020, 38, 202.
[11] Umemoto, T. Chem. Rev. 1996, 96, 1757.
[12] (a) Yagupol'skii, L. M.; Kondratenko, N. Y.; Timofeeva, G. N. Zh. Org. Khim. 1984, 20, 115.
(b) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156.
(c) Umemoto, T.; Ishihara, S.; Adachi, K. J. Fluorine Chem. 1995, 74, 77.
(d) Umemoto, T.; Ishihara, S. J. Fluorine Chem. 1999, 98, 75.
(e) Umemoto, T.; Adachi, K. J. Org. Chem. 1994, 59, 5692.
(f) Yang, J. J.; Kirchmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1998, 63, 2656.
(g) Ma, J.-A.; Cahard, D. J. Org. Chem. 2003, 68, 8726.
[13] (a) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863.
(b) Prakash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. J. Comb. Chem. 2007, 9, 920.
[14] Yue, C.-B.; Lin, J.-H.; Cai, J.; Zhang, C.-P.; Zhao, G.; Xiao, J.-C.; Li, H. RSC Adv. 2016, 6, 35705.
[15] (a) Noto, N.; Koike, T.; Akita, M. Chem. Sci. 2017, 8, 6375.
(b) Noto, N.; Tanaka, Y.; Koike, T.; Akita, M. ACS Catal. 2018, 8, 9408.
[16] (a) Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Jr. Org. Lett. 2014, 16, 4594.
(b) Zhang, Z.; Tang, X.-J.; Thomoson, C. S.; Dolbier, W. R. Jr. Org. Lett. 2015, 17, 3528.
(c) Zhang, Z.; Tang, X.-J.; Dolbier, W. R. Jr. Org. Lett. 2015, 17, 4401.
(d) Rong, J.; Deng, L.; Tan, P.; Ni, C.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2016, 55, 2743.
(e) Fu, W.; Han, X.; Zhu, M.; Xu, C.; Wang, Z.; Ji, B.; Hao, X.-Q.; Song, M.-P. Chem. Commun. 2016, 52, 13413.
(f) Zhang, Z.; Tang, X.-J.; Dolbier, W. R. Jr. Org. Lett. 2016, 18, 1048.
(g) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880.
(h) Zhang, Z.; Martinez, H.; Dolbier, W. R. J. Org. Chem. 2017, 82, 2589.
(i) Zhu, M.; Fu, W.; Wang, Z.; Xu, C.; Ji, B. Org. Biomol. Chem. 2017, 15, 9057.
(j) Duchemin, N.; Buccafusca, R.; Daumas, M.; Ferey, V.; Arseniyadis, S. Org. Lett. 2019, 21, 8205.
(k) Wang, Z.-S.; Chen, Y.-B.; Zhang, H.-W.; Sun, Z.; Zhu, C.; Ye, L. J. Am. Chem. Soc. 2020, 142, 3636.
[17] (a) Lu, S.-L.; Li, X.; Qin, W.-B.; Liu, J.-J.; Huang, Y.-Y.; Wong, H. N. C.; Liu, G.-K. Org. Lett. 2018, 20, 6925.
(b) Liu, G.-K.; Li, X.; Qin, W.-B.; Peng, X.-S.; Wong, H. N. C.; Zhang, L.; Zhang, X. Chem. Commun. 2019, 55, 7446.
(c) Liu, G.-K.; Qin, W.-B.; Li, X.; Lin, L.-T.; Wong, H. N. C. J. Org. Chem. 2019, 84, 15948.
(d) Liu, G.-K.; Li, X.; Qin, W.-B.; Lin, W.-F.; Lin, L.-T.; Chen, J.-Y.; Liu, J.-J. Chin. Chem. Lett. 2019, 30, 1515.
[18] (a) Zhang, C.; Cao, H.; Wang, Z.; Zhang, C.; Chen, Q.; Xiao, J. Synlett 2010, 1089.
(b) Liu, G.; Mori, S.; Wang, X.; Noritake, S.; Tokunaga, E.; Shibata, N. New J. Chem. 2012, 36, 1769.
(c) Liu, G.; Wang, X.; Lu, X.; Xu, X.-H.; Tokunaga, E.; Shibata, N. ChemistryOpen 2012, 1, 227.
(d) Liu, G.; Wang, X.; Xu, X.-H.; Lu, X.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. Org. Lett. 2013, 15, 1044.
[19] (a) Zhang, W.; Wang, F.; Hu, J. Org. Lett. 2009, 11, 2109.
(b) Pégot, B.; Urban, C.; Bourne, A.; Le, T. N.; Bouvet, S.; Marrot, J.; Diter, P.; Magnier, E. Eur. J. Org. Chem. 2015, 3069.
[20] (a) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Ni, C.; Olah, G. A. J. Fluorine Chem. 2011, 132, 792.
(b) Yang, Y.; Lu, X.; Liu, G.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. ChemistryOpen 2012, 1, 221.
[21] (a) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem.-Eur. J. 2016, 22, 1262.
(b) Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.
(c) Nakayama, Y.; Ando, G.; Abe, M.; Koike, T.; Akita, M. ACS Catal. 2019, 9, 6555.
[22] (a) Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 9050.
(b) Zhu, J.; Zheng, H.; Xue, X.-S.; Xiao, Y.; Liu, Y.; Shen, Q. Chin. J. Chem. 2018, 36, 1069.
[23] Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.
[24] (a) Zheng, J.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Chem.-Eur. J. 2013, 19, 15261.
(b) Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015, 51, 8805.
(c) Liu, C.; Deng, X.-Y.; Zeng, X.-L.; Zhao, G.; Lin, J.-H.; Wang, H.; Xiao, J.-C. J. Fluorine Chem. 2016, 192, 27.
[25] Hua, M.-Q.; Wang, W.; Liu, W.-H.; Wang, T.; Zhang, Q.; Huang, Y.; Zhu, W.-H. J. Fluorine Chem. 2016, 181, 22.
[26] Zheng, Q.-T.; Wei, Y.; Zheng, J.; Duan, Y.-Y.; Zhao, G.; Wang, Z.-B.; Lin, J.-H.; Zheng, X.; Xiao, J.-C. RSC Adv. 2016, 6, 82298.
[27] Deng, X.-Y.; Lin, J.-H.; Xiao, J.-C. J. Fluorine Chem. 2015, 179, 116.
[28] Zheng, J.; Lin, J.-H.; Yu, L.-Y.; Wei, Y.; Zheng, X.; Xiao, J.-C. Org. Lett. 2015, 17, 6150.
[29] (a) Reger, D. L.; Dukes, M. D. J. Organomet. Chem. 1978, 153, 67.
(b) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
[30] Feng, Z.; Min, Q.-Q.; Zhang, X. Org. Lett. 2016, 18, 44.
[31] Deng, X.-Y.; Lin, J.-H.; Xiao, J.-C. Org. Lett. 2016, 18, 4384.
[32] Fu, X.-P.; Xue, X.-S.; Zhang, X.-Y.; Xiao, Y.-L.; Zhang, S.; Guo, Y.-L.; Leng, X.; Houk, K. N.; Zhang, X. Nat. Chem. 2019, 11, 948.
[33] (a) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. Org. Lett. 2015, 17, 532.
(b) Wei, Y.; Yu, L.; Lin, J.; Zheng, X.; Xiao, J. Chin. J. Chem. 2016, 34, 481.
[34] (a) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2015, 54, 13236.
(b) Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D.-H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196.
(c) Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669.
(d) Luo, J.-J.; Zhang, M.; Lin, J.-H.; Xiao, J.-C. J. Org. Chem. 2017, 82, 11206.
(e) Chen, X.-L.; Zhou, S.-H.; Lin, J.-H.; Deng, Q.-H.; Xiao, J.-C. Chem. Commun. 2019, 55, 1410.
[35] (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew. Chem., Int. Ed. 2016, 55, 1479.
(b) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2016, 81, 7001.
(c) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 2419.
(d) Hu, W.-Q.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2018, 208, 73.
[36] Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 7373.
[37] Yu, J.; Lin, J.-H.; Cao, Y.-C.; Xiao, J.-C. Org. Chem. Front. 2019, 6, 3580.
[38] Zhang, M.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2019, 58, 6079.
[39] (a) Urban, C.; Macé, Y.; Cadoret, F.; Blazejewski, J. C.; Magnier, E. Adv. Synth. Catal. 2010, 352, 2805.
(b) Urban, C.; Cadoret, F.; Blazejewski, J. C.; Magnier, E. Eur. J. Org. Chem. 2011, 4862.
(c) Macé, Y.; Magnier, E. Eur. J. Org. Chem. 2012, 2479.
[40] (a) Zhang, W.; Zhu, J.; Hu, J. Tetrahedron Lett. 2008, 49, 5006.
(b) He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 3944.
(c) He, Z.; Hu, M.; Luo, T.; Li, L.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 11545.
[41] Wang, X.; Liu, G.; Xu, X.-H.; Shibata, N.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2014, 53, 1827.
Outlines

/