Research Progress in Cancer Treatment by Diketopyrrolopyrrole-Based Photosensitizers and Photothermal Agents

  • Wang Lingyun ,
  • Xin Shuqi ,
  • Tang Hao ,
  • Cao Derong
Expand
  • School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640

Received date: 2020-05-18

  Revised date: 2020-06-17

  Online published: 2020-07-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772045, 22071065), the Natural Science Foundation of Guangdong Province (No. 2018B030311008), the China Scholarship Council (No. 201906155012) and the Technology Program of Guangzhou City (No. 201904010414).

Abstract

Cancer has become one of the major threats to human health in modern society. Phototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT), as a new type of tumor treatment, has received more and more attentions due to its high spatiotemporal precision, noninvasive nature, controllability, low toxicity and repeatable treatment without initial resistance. It is important to obtain a highly efficient and ideal photosensitizer for reactive oxygen species (ROS) generation for PDT. Photothermal agents with high photothermal conversion efficiency are also in urgent need for PTT. Diketopyrrolopyrrole (DPP) is an excellent type of photosensitizer and photothermal reagent because of its good structural planarity, strong electron affinity, simple synthesis, easy structure modification and high molar absorption coefficient. The research progress of DPP-based photosensitizers and photothermal agents in recent year, including structural modification of DPP, the structure-activity relationship, the mechanism of phototherapy and some representative examples is summarized. Finally, a perspective on the future development of phototherapy based on DPP is presented.

Cite this article

Wang Lingyun , Xin Shuqi , Tang Hao , Cao Derong . Research Progress in Cancer Treatment by Diketopyrrolopyrrole-Based Photosensitizers and Photothermal Agents[J]. Chinese Journal of Organic Chemistry, 2020 , 40(12) : 4155 -4167 . DOI: 10.6023/cjoc202005041

References

[1] Wilson, B.; Weersink, R. Photochem. Photobiol. 2020, 96, 219.
[2] Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Chem. Soc. Rev. 2019, 48, 2053.
[3] Wang, P.; Sun, S.; Ma, H.; Sun, S.; Zhao, D.; Wang, S.; Liang, X. Mater. Sci. Eng., C 2020, 108, 11019.
[4] Rejinold, N.; Choi, Choy, G. Coord. Chem. Rev. 2020, 411, 213252.
[5] Fan, W.; Huang, P.; Chen, X. Chem. Soc. Rev. 2016, 45, 6488.
[6] Yano, S.; Hirohara, S.; Obata, M.; Hagiya, Y.; Ogura, S. I.; Ikeda, A.; Kataoka, H.; Tanaka, M.; Joh, T. J. Photochem. Photobiol., C 2011, 12, 46.
[7] Allison, R. R; Sibata, C. H. Photodiagn. Photodyn. Ther. 2010, 7, 61.
[8] Cai, Y.; Tang, Q.; Wu, X.; Si, W.; Zhang, Q.; Huang, W.; Dong, X. ACS Appl. Mater. Inter. 2016, 8, 10737.
[9] Liang, P.; Shao, J.; Tang, Q.; Si, W.; Wang, Q.; Zhang, Q.; Dong, X. RSC Adv. 2017, 7, 37369.
[10] Zou, J.; Yin, Z.; Wang, P.; Chen, D.; Shao, J.; Zhang, Q.; Sun, L.; Huang, W.; Dong, X. Chem. Sci. 2018, 9, 2188.
[11] He, H.; Zheng, X.; Liu, S.; Zheng, M.; Xie, Z.; Wang, Y.; Yu, M.; Shuai, X. Nanoscale 2018, 10, 10991.
[12] Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Ftouni, H.; Nicoud, J.; Flamigni, L.; Ventura, B. Angew. Chem., Int. Ed. 2015, 54, 169.
[13] Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Kessler, P.; Flamigni, L.; Ventura, B.; Bonnet, C. S.; Tóth, É. Chem.-Eur. J 2016, 22, 2775.
[14] Fisher, J. W.; Sarkar, S.; Buchanan, C. F.; Szot, C. S.; Whitney, J.; Hatcher, H. C.; Torti, S. V.; Rylander, C. G.; Rylander, M. N. Cancer Res. 2010, 70, 9855.
[15] Gaca, S.; Reichert, S.; Multhoff, G.; Wacker, M.; Hehlgans, S.; Botzler, C.; Gehrmann, M.; Rodel, C.; Kreuter, J.; Rodel, F. J. Controlled Release 2013, 172, 201.
[16] Liang, P.; Tang, Q.; Cai, Y.; Liu, G.; Si, W.; Shao, J.; Huang, W.; Zhang, Q.; Dong, X. Chem. Sci. 2017, 8, 7457.
[17] Zong, S.; Wang, X.; Lin, W.; Liu, S.; Zhang, W. Bioconjugate Chem. 2018, 29, 2619.
[18] Wu, F.; Chen, L.; Yue, L.; Wang, K.; Cheng, K.; Chen, J.; Luo, X.; Zhang, T. ACS Appl. Mater. Interfaces 2019, 11, 21408.
[19] Cai, Y.; Si, W.; Tang, Q.; Liang, P.; Zhang, C.; Chen, P.; Zhang, Q.; Huang, W.; Dong, X. Nano Res. 2017, 10, 794.
[20] Chen, H.; Zhang, J.; Chang, K.; Men, X.; Fang, X.; Zhou, L.; Li, D.; Gao, D.; Yin, S.; Zhang, X.; Yuan, Z.; Wu, C. Biomaterials 2017, 144, 42.
[21] Li, S.; Deng, Q.; Li, X.; Huang, Y.; Li, X.; Liu, F.; Wang, H.; Qing, W.; Liu, Z.; Lee, C. Biomaterials 2019, 216, 119252.
[22] Guo, L.; Liu, W.; Niu, G.; Zhang, P.; Zheng, X.; Jia, Q.; Zhang, H.; Ge, J.; Wang, P. J. Mater. Chem. B 2017, 5, 2832.
[23] Wei, Z.; Wu, M.; Lan, S.; Li, J.; Zhang, X.; Zhang, D.; Liu, X.; Liu, J. Chem. Commun. 2018, 54, 13599.
[24] Lu, X.; Yuan, P.; Zhang, W.; Wu, Q.; Wang, X.; Zhao, M.; Sun, P.; Huang, W.; Fan, Q. Polym. Chem. 2018, 9, 3118.
[25] Zhang, W.; Lin, W.; Li, C.; Liu, S.; Hu, X.; Xie, Z. ACS Appl. Mater. Interfaces 2019, 11, 32720.
[26] Liu, H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Colloids Surf., B 2017, 157, 398.
[27] Cao, Y.; Yi, J.; Yang, X.; Liu, L.; Yu, C.; Huang, Y.; Sun, L.; Bao, Y.; Li, Y. Biomacromolecules 2017, 18, 2306.
[28] Cao, Y.; Wu, Y.; Wang, G.; Yi, J.; Yu, C.; Huang, Y.; Sun, L.; Bao, Y.; Li, Y. J. Mater. Chem. B 2017, 5, 5479.
[29] Wu, Y.; Wang, K.; Huang, S.; Yang, C.; Wang, M. ACS Appl. Mater. Interfaces 2017, 9, 13602.
[30] Xu, Y.; Chen, J.; Tong, L.; Su, P.; Liu, Y.; Gu, B.; Bao, B.; Wang, L. J. Controlled Release 2019, 293, 94.
[31] Guo, W.; Guo, C.; Zheng, N.; Sun, T.; Liu, S. Adv. Mater. 2017, 29, 1604157.
[32] Liang, P.; Wang, Y.; Wang, P.; Zou, J.; Xu, H.; Zhang, Y.; Si, W.; Dong, X. Nanoscale 2017, 9, 18890.
[33] Cai, Y.; Liang, P.; Tang, Q; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. ACS Nano 2017, 11, 1054.
[34] Cai, Y.; Liang, P.; Si, W.; Zhao, B.; Shao, J.; Huang, W.; Zhang, Y.; Zhang, Q.; Dong, X. Org. Chem. Front. 2018, 5, 98.
[35] Wang, Q.; Xia, B.; Xu, J.; Niu, X.; Cai, J.; Shen, Q.; Wang, W.; Huang, W.; Fan, Q. Mater. Chem. Front. 2019, 3, 650.
[36] Yang, J.; Cai, Y.; Zhou, Y.; Zhang, C.; Liang, P.; Zhao, B.; Shao, J.; Fu, N.; Huang, W.; Dong, X. Dyes Pigm. 2017, 147, 270.
[37] Yang, X.; Yu, Q.; Yang, N.; Xue, L.; Shao, J.; Li, B.; Shao, J.; Dong, X. J. Mater. Chem. B 2019, 7, 2454.
[38] Huang, X.; Gu, R.; Li, J.; Yang, N.; Cheng, Z.; Si, W.; Chen, P.; Huang, W.; Dong, X. Sci. China:Chem. 2020, 63, 55.
[39] Wang, P.; Wu, W.; Gao, R.; Zhu, H.; Wang, J.; Du, R.; Li, X.; Zhang, C.; Cao, S.; Xiang, R. ACS Appl. Mater. Interfaces 2019, 11, 13935.
[40] Deng, W.; Wu, Q.; Sun, P.; Yuan, P.; Lu, X.; Fan, Q.; Huang, W. Polym. Chem. 2018, 9, 2805.
[41] Shi, H.; Wang, Y.; Huang, X.; Liang, P.; Tang, Y.; Zhang, Y.; Fu, N., Huang, W.; Dong, X. J. Mater. Chem. B 2018, 6, 7402.
[42] Zhou, S.; Yang, C.; Guo, L.; Wang, Y.; Zhang, G.; Feng, L. Chem. Commun. 2019, 55, 8615.
[43] Gong, H.; Cheng, L.; Xiang, J.; Xu, H.; Feng, L.; Shi, X.; Liu, Z. Funct. Mater. 2013, 23, 6059.
[44] Wang, H.; Agarwal, P.; Zhao, S.; Yu, J.; Lu, X.; He, X. Biomaterials 2016, 97, 62.
[45] Cai, Y.; Liang, P.; Tang, Q.; Si, W.; Chen, P.; Zhang, Q.; Dong, X. ACS Appl. Mater. Interfaces 2017, 9, 30398.
[46] Wang, Q.; Dai, Y.; Xu, J.; Cai, J.; Niu, X.; Zhang, L.; Chen, R.; Shen, Q.; Huang, W.; Fan, Q. Adv. Funct. Mater. 2019, 29, 1901480.
[47] Liang, P.; Huang, H.; Wang, Y.; Chen, D.; Ou, C.; Zhang, Q.; Shao, J.; Huang, W.; Dong, X. ACS Nano 2018, 12, 11446.
Outlines

/