Recent Progress in C(sp3)-H Asymmetric Oxidation Catalyzed by Bioinspired Metal Complexes

  • Sun Qiangsheng ,
  • Sun Wei
Expand
  • State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000

Received date: 2020-06-05

  Revised date: 2020-06-19

  Online published: 2020-07-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21773273, 21473226, 21902166), the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH051) and the Natural Science Foundation of Jiangsu Province (No. BK20170420).

Abstract

C—H oxidation represents one of the most important reactions in organic chemistry. In particular, asymmetric C—H oxidation, which can directly convert simple alkanes into chiral alcohols, ketones, aldehydes and so on, provides more economic and efficient access to the synthesis of complex molecules. Although increasing efforts have been devoted to this area, asymmetric C—H oxidation is still far away from the goal due to the inert nature of C—H and the subtle stereo-difference of C—H bonds. The factors that dictate the selectivity of asymmetric C—H oxidation, mechanism of the C—H oxidation catalyzed by enzyme and some successful examples achieved by biomimetic metal complexes bearing various ligands are reviewed.

Cite this article

Sun Qiangsheng , Sun Wei . Recent Progress in C(sp3)-H Asymmetric Oxidation Catalyzed by Bioinspired Metal Complexes[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3686 -3696 . DOI: 10.6023/cjoc202006008

References

[1] (a) Katsuki, T. Comprehensive Asymmetric Catalysis I-III:C-H Oxidation, Eds.:Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., 1999, p. 791.
(b) Costas, M. Coord. Chem. Rev. 2011, 255, 2912.
(c) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50, 3362.
(d) Zhou, M.; Crabtree, R. H. Chem. Soc. Rev. 2011, 40, 1875.
(e) Qian, S.; Ma, Y.; Gao, S.; Luo, J. Chin. J. Org. Chem. 2018, 38, 1930(in Chinese). (钱少平, 马尧睿, 高姗姗, 骆钧飞, 有机化学, 2018, 38, 1930.)
(f) Wu, J.; Zhu, J.; Li, H.; Wu, C.; Shen, R.; Yu, L. Chin. J. Org. Chem. 2019, 39, 3328(in Chinese). (吴锦雯, 朱佳雯, 李慧, 吴春雷, 沈润溥, 余乐茂, 有机化学, 2019, 39, 3328.)
[2] (a) Li, G.; Zhang, L. Chin. J. Org. Chem. 1985, 5, 27(in Chinese). (李广年, 张良辅, 有机化学, 1985, 5, 27.)
(b) Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2014, 16, 1108.
(c) Chen, J.; Lutz, M.; Milan, M.; Costas, M.; Otte, M.; Klein Gebbink, R. J. M. Adv. Synth. Catal. 2017, 359, 2590.
(d) Dantignana, V.; Milan, M.; Cusso, O.; Company, A.; Costas, M.; Bietti, M. ACS Cent. Sci. 2017, 3, 1350.
(e) Milan, M.; Costas, M.; Salamone, M.; Bietti, M. Acc. Chem. Res. 2018, 51, 1984.
(f) Wang, W.; Xu, D.; Sun, Q.; Sun, W. Chem.-Asian J. 2018, 13, 2458.
(g) White, M. C.; Zhao, J. J. Am. Chem. Soc. 2018, 140, 13988.
[3] (a) Guo, M.; Corona, T.; Ray, K.; Nam, W. ACS Cent. Sci. 2019, 5, 13.
(b) Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. J. Am. Chem. Soc. 2014, 136, 13942.
(c) Yin, G. Acc. Chem. Res. 2013, 46, 483.
(d) Que, L. Jr.; Tolman, W. B. Nature 2008, 455, 333.
[4] Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC press, Boca Raton, 2003.
[5] Asensio, G.; Castellano, G.; Mello, R.; González Núñez, M. E. J. Org. Chem. 1996, 61, 5564.
[6] Chen, M. S.; White, M. C. Science 2007, 318, 783.
[7] Asensio, G.; González Núñez, M. E.; Bernardini, C. B.; Mello, R.; Adam, W. J. Am. Chem. Soc. 1993, 115, 7250.
[8] Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 12796.
[9] Luo, F. Chin. J. Org. Chem. 2019, 39, 3084(in Chinese). (罗飞华, 有机化学, 2019, 39, 3084.)
[10] Tenaglia, A.; Terrenova, E.; Waegell, B. J. Org. Chem. 1992, 57, 5523.
[11] Gómez, L.; Garcia-Bosch, I.; Company, A.; Benet-Buchholz, J.; Polo, A.; Sala, X.; Ribas, X.; Costas, M. Angew. Chem., Int. Ed. 2009, 48, 5720.
[12] Chen, K.; Eschenmoser, A.; Baran, P. S. Angew. Chem., Int. Ed. 2009, 48, 9705.
[13] Du, X.; Houk, K. N. J. Org. Chem. 1998, 63, 6480.
[14] (a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.
(b) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947.
(c) Jiang, Y.; Li, S. Chin. J. Org. Chem. 2018, 38, 2307(in Chinese). (蒋媛媛, 李盛英, 有机化学, 2018, 38, 2307.)
[15] (a) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932.
(b) Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. Chem. Rev. 2005, 105, 2227.
[16] (a) Groves, J. T.; Viski, P. J. Am. Chem. Soc. 1989, 111, 8537.
(b) Groves, J. T.; Viski, P. J. Org. Chem. 1990, 55, 3628.
[17] Gross, Z.; Ini, S. Org. Lett. 1999, 1, 2077.
[18] Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che, C.-M. Chem. Commun. 1999, 2441.
[19] Srour, H.; Le Maux, P.; Simonneaux, G. Inorg. Chem. 2012, 51, 5850.
[20] Maux, P. L.; Srour, H. F.; Simonneaux, G. Tetrahedron 2012, 68, 5824.
[21] Frost, J. R.; Huber, S. M.; Breitenlechner, S.; Bannwarth, C.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 691.
[22] (a) Fackler, P.; Berthold, C.; Voss, F.; Bach, T. J. Am. Chem. Soc. 2010, 132, 15911.
(b) Fackler, P.; Huber, S. M.; Bach, T. J. Am. Chem. Soc. 2012, 134, 12869.
[23] Burg, F.; Gicquel, M.; Breitenlechner, S.; Pöthig, A.; Bach, T. Angew. Chem., Int. Ed. 2018, 57, 2953.
[24] Burg, F.; Breitenlechner, S.; Jandl, C.; Bach, T. Chem. Sci. 2020, 11, 2121.
[25] (a) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189.
(b) Bhatia, B.; Punniyamurthy, T.; Iqbal, J. In Asymmetric Oxidation Reactions, Ed.:Katsuki, T., Oxford University Press, New York, 2001, p. 1~15.
(c) Matsumoto, K.; Saito, B.; Katsuki, T. Chem. Commun. 2007, 3619.
(d)Fan, Q.-H.; Ding, K. Top. Organomet. Chem. 2011, 36, 207.
(e) Shaw, S.; White, J. D. Chem. Rev. 2019, 119, 9381.
[26] Hamachi, K.; Irie, I.; Katsuki, T. Tetrahedron Lett. 1996, 37, 4979.
[27] Miyafuji, A.; Katsuki, T. Tetrahedron 1998, 54, 10339.
[28] Punniyamurthy, T.; Miyafuji, A.; Katsuki, T. Tetrahedron Lett. 1998, 39, 8295.
[29] Murahashi, S. I.; Noji, S.; Komiya, N. Adv. Synth. Catal. 2004, 346, 195.
[30] Murahashi, S.; Noji, S.; Hirabayashi, T.; Komiya, N. Tetrahedron:Asymmetry 2005, 16, 3527.
[31] Milan, M.; Bietti, M.; Costas, M. ACS Cent. Sci. 2017, 3, 196.
[32] (a) Mas-Ballesté, R.; Que, L. Jr. J. Am. Chem. Soc. 2007, 129, 15964.
(b) Lyakin, O. Y.; Ottenbacher, R. V.; Bryliakov, K. P.; Talsi, E. P. ACS Catal. 2012, 2, 1196.
[33] (a) Du, J.; Miao, C.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. ACS Catal. 2018, 8, 4528.
(b) Li, X.-X.; Guo, M.; Qiu, B.; Cho, K.-B.; Sun, W.; Nam, W. Inorg. Chem. 2019, 58, 14842.
[34] Milan, M.; Bietti, M.; Costas, M. Org. Lett. 2018, 20, 2720.
[35] Talsi, E. P.; Samsonenko, D. G.; Ottenbacher, R. V.; Bryliakov, K. P. ChemCatChem 2017, 9, 4580.
[36] Sun, W.; Sun, Q. Acc. Chem. Res. 2019, 52, 2370.
[37] (a) Wang, B.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Chem.-Eur. J. 2012, 18, 6750.
(b) Wang, B.; Wang, S.; Xia, C.; Sun, W. Chem.-Eur. J. 2012, 18, 7332.
(c) Wu, M.; Wang, B.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2009, 11, 3622.
(d) Miao, C.; Wang, B.; Wang, Y.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. J. Am. Chem. Soc. 2016, 138, 936.
(e) Shen, D.; Qiu, B.; Xu, D.; Miao, C.; Xia, C.; Sun, W. Org. Lett. 2016, 18, 372.
(f) Wang, W.; Sun, Q.; Xia, C.; Sun, W. Chin. J. Catal. 2018, 39, 1463.
[38] Qiu, B.; Xu, D.; Sun, Q.; Miao, C.; Lee, Y.-M.; Li, X.-X.; Nam, W.; Sun, W. ACS Catal. 2018, 8, 2479.
[39] Qiu, B.; Xu, D.; Sun, Q.; Lin, J.; Sun, W. Org. Lett. 2019, 21, 618.
[40] Cianfanelli, M.; Olivo, G.; Milan, M.; Klein Gebbink, R. J. M.; Ribas, X.; Bietti, M.; Costas, M. J. Am. Chem. Soc. 2020, 142, 1584.
Outlines

/