Artificial Stimuli-Responsive Catalytic Systems for Switchable Asymmetric Catalysis

  • Tang Yuping ,
  • He Yanmei ,
  • Fan Qinghua
Expand
  • a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences(CAS), Beijing 100190;
    b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-06-30

  Revised date: 2020-08-03

  Online published: 2020-08-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772204, 21521002), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDJ-SSW-SLH023).

Abstract

Inspired by enzyme allosteric catalysis, the study on artificial stimuli-responsive asymmetric catalytic systems has attracted more and more attentions in recent years. In order to precisely control the catalytic activity and stereoselectivity, stimuli-responsive functionalities have been introduced into the catalyst design. A variety of asymmetric reactions featuring on/off-switchable catalysis and/or stereodivergent catalysis have been successfully achieved by using light-, coordination-, pH-and redox-driven chiral switchable catalysts. By selecting representative examples, the catalyst design principles, allosteric mechanism and their applications in switchable asymmetric reactions sre mainly introduced. At the same time, advantages and limitations of this emerging field are summarized, and perspectives for its future development are given.

Cite this article

Tang Yuping , He Yanmei , Fan Qinghua . Artificial Stimuli-Responsive Catalytic Systems for Switchable Asymmetric Catalysis[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3672 -3685 . DOI: 10.6023/cjoc202006076

References

[1] (a) Traut, T. Enzyme Activity:Allosteric Regulation, John Wiley & Sons Ltd, Chichester, 2014.
(b) Traut, T. Allosteric Regulatory Enzymes, Springer, New York, 2008.
[2] van Leeuwen, P. W. N. M. Homogeneous Catalysis:Understanding the Art, Springer, Dordrecht, 2004.
[3] van Leeuwen, P. W. N. M. Supramolecular Catalysis, Wiley-VCH, Weinheim, 2008.
[4] (a) Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2014, 43, 1660.
(b) Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2014, 43, 1734.
(c) Wang, Q.-Q. In Handbook of Macrocyclic Supramolecular Assembly, Eds.:Liu, Y.; Chen, Y.; Zhang, H.-Y., Springer, Singapore, 2019, pp. 1~124.
(d) Tang, Y.; He, Y.; Feng, Y.; Fan. Q. Prog. Chem. 2018, 30, 476(in Chinese). (唐雨平, 何艳梅, 冯宇, 范青华, 化学进展, 2018, 30, 476.)
[5] (a) Lüning, U. Angew. Chem., Int. Ed. 2012, 51, 8163.
(b) Blanco, V.; Leigh, D. A.; Marcos, V. Chem. Soc. Rev. 2015, 44, 5341.
(c) Vlatković, M.; Collins, B. S. L.; Feringa, B. L. Chem.-Eur. J. 2016, 22, 17080.
(d) van Dijk, L.; Tilby, M. J.; Szpera, R.; Smith, O. A.; Bunce, H. A. P.; Fletcher, S. P. Nat. Rev. Chem. 2018, 2, 0117.
[6] (a) Cao, W.; Feng, X.; Liu, X. Org. Biomol. Chem. 2019, 17, 6538.
(b) Ding, Z.-Y.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012, 51, 5706.
[7] Kasprzyk-Hordern, B. Chem. Soc. Rev. 2010, 39, 4466.
[8] Romanazzi, G.; Degennaro, L.; Mastrorilli, P.; Luisi, R. ACS Catal. 2017, 7, 4100.
[9] (a) Yamamoto, T.; Yamada, T.; Nagata, Y.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 7899.
(b) Akai, Y.; Yamamoto, T.; Nagata, Y.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 11092.
(c) Nagata, Y.; Nishikawa, T.; Suginome, M. J. Am. Chem. Soc. 2014, 136, 15901.
(d) Akai, Y.; Konnert, L.; Yamamoto, T.; Suginome, M. Chem. Commun. 2015, 51, 7211.
(e) Ke, Y.-Z.; Nagata, Y.; Yamada, T.; Suginome, M. Angew. Chem., Int. Ed. 2015, 54, 9333.
[10] Stoll, R. S.; Hecht, S. Angew. Chem., Int. Ed. 2010, 49, 5054.
[11] Irie, M. Chem. Rev. 2000, 100, 1685.
[12] Sud, D.; Norsten, T. B.; Branda, N. R. Angew. Chem., Int. Ed. 2005, 44, 2019.
[13] (a) Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada, N.; Feringa, B. L. Nature 1999, 401, 152.
(b) Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J.; Feringa, B. L. Nature 2006, 440, 163.
[14] Dorel, R.; Feringa, B. L. Chem. Commun. 2019, 55, 6477.
[15] Wang, J.; Feringa, B. L. Science 2011, 331, 1429.
[16] Vlatković, M.; Bernardi, L.; Otten, E.; Feringa, B. L. Chem. Commun. 2014, 50, 7773.
[17] Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327.
[18] Zhao, D.; Neubauer, T. M.; Feringa, B. L. Nat. Commun. 2015, 6, 6652.
[19] (a) Juwarker, H.; Lenhardt, J. M.; Pham, D. M.; Craig, S. L. Angew. Chem., Int. Ed. 2008, 47, 3740.
(b) Juwarker, H.; Jeong, K.-S. Chem. Soc. Rev. 2010, 39, 3664.
[20] Dorel, R.; Feringa, B. L. Angew. Chem., Int. Ed. 2020, 59, 785.
[21] (a) Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 5037.
(b) Vicario, J.; Walko, M.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 5127.
(c) Klok, M.; Walko, M.; Geertsema, E. M.; Ruangsupapichat, N.; Kistemaker, J. C. M.; Meetsma, A.; Feringa, B. L. Chem.-Eur. J. 2008, 14, 11183.
[22] Pizzolato, S. F.; Collins, B. S. L.; van Leeuwen, T.; Feringa, B. L. Chem.-Eur. J. 2017, 23, 6174.
[23] Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; van Leeuwen, T.; Otten, E.; Feringa, B. L. J. Am. Chem. Soc. 2018, 140, 17278.
[24] Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; van Leeuwen, T.; Feringa, B. L. Nat. Catal. 2020, 3, 488.
[25] (a) Chen, C.-T.; Chou, Y.-C. J. Am. Chem. Soc. 2000, 122, 7662.
(b) Chen, W.-C.; Lee, Y.-W.; Chen, C.-T. Org. Lett. 2010, 12, 1472.
(c) Chen, C.-T.; Chen, C.-H.; Ong, T.-G. J. Am. Chem. Soc. 2013, 135, 5294.
[26] Chen, C.-T.; Tsai, C.-C.; Tsou, P.-K.; Huang, G.-T.; Yu, C.-H. Chem. Sci. 2017, 8, 524.
[27] (a) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
(b) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.
[28] Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A. Acc. Chem. Res. 2008, 41, 1618.
[29] Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114.
[30] Gianneschi, N. C.; Masar III, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.
[31] Yoon, H. J.; Kuwabara, J.; Kim, J.-H.; Mirkin, C. A. Science 2010, 330, 66.
[32] Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10508.
[33] Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924.
[34] Gianneschi, N. C.; Cho, S.-H.; Nguyen, S. T.; Mirkin, C. A. Angew. Chem., Int. Ed. 2004, 43, 5503.
[35] Ouyang, G.-H.; He, Y.-M.; Li, Y.; Xiang, J.-F.; Fan, Q.-H. Angew. Chem., Int. Ed. 2015, 54, 4334.
[36] (a) Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. Chem. Soc. Rev. 2012, 41, 19.
(b) Zhang, L.; Marcos, V.; Leigh, D. A. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9397.
[37] Leigh, D. A.; Marcos, V.; Wilson, M. R. ACS Catal. 2014, 4, 4490.
[38] Blanco, V.; Carlone, A.; Hänni, K. D.; Leigh, D. A.; Lewandowski, B. Angew. Chem., Int. Ed. 2012, 51, 5166.
[39] Blanco, V.; Leigh, D. A.; Marcos, V.; Morales-Serna, J. A.; Nussbaumer, A. L. J. Am. Chem. Soc. 2014, 136, 4905.
[40] (a) Alvarez-Pérez, M.; Goldup, S. M.; Leigh, D. A.; Slawin, A. M. Z. J. Am. Chem. Soc. 2008, 130, 1836.
(b) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A. J. Am. Chem. Soc. 2016, 138, 1749.
[41] Dommaschk, M.; Echavarren, J.; Leigh, D. A.; Marcos, V.; Singleton, T. A. Angew. Chem., Int. Ed. 2019, 58, 14955.
[42] De Bo, G.; Leigh, D. A.; McTernan, C. T.; Wang, S. Chem. Sci. 2017, 8, 7077.
[43] (a) Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem.-Eur. J. 2011, 17, 248.
(b) Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963.
[44] (a) Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Ed. 1998, 37, 894.
(b) Praneeth, V. K. K.; Ringenberg, M. R.; Ward, T. R. Angew. Chem., Int. Ed. 2012, 51, 10228.
[45] Zahn, S.; Canary, J. W. Science 2000, 288, 1404.
[46] Mortezaei, S.; Catarineu, N. R.; Canary, J. W. J. Am. Chem. Soc. 2012, 134, 8054.
[47] Mortezaei, S.; Catarineu, N. R.; Duan, X.; Hu, C.; Canary, J. W. Chem. Sci. 2015, 6, 5904.
[48] Zhang, Q.; Cui, X.; Zhang, L.; Luo, S.; Wang, H.; Wu, Y. Angew. Chem., Int. Ed. 2015, 54, 5210.
[49] (a) Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Marcos, V.; Palmer, L. I.; Pisano, S. Nature 2017, 549, 374.
(b) Kelly, T. R.; Snapper, M. L. Nature 2017, 549, 336.
[50] (a) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Nature 2017, 543, 637.
(b) Huang, G.; Chen, Z.; Wei, X.; Chen, Y.; Li, X.; Zhong, H.; Tan, M. Chin. J. Org. Chem. 2020, 40, 614(in Chinese). (黄国保, 陈志林, 韦贤生, 陈钰, 李秀英, 仲辉, 谭明雄, 有机化学, 2020, 40, 614.)
(c) Wang, Y.; Liu, H.; Zhu, X. Acta Chim. Sinica 2020, 78, 746(in Chinese). (王友付, 刘航海, 朱新远, 化学学报, 2020, 78, 746.)
Outlines

/