REVIEWS

Recent Progress in the Synthesis of Dendralenes: A Decade Update

  • Jie Zhu ,
  • Wenchao Yang ,
  • Chengyun Zhang ,
  • Lei Wu
Expand
  • a Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095
    b College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009
* Corresponding author. E-mail:

Received date: 2020-08-13

  Revised date: 2020-09-03

  Online published: 2020-09-22

Supported by

Natural Science Foundation of Jiangsu Province(BK20191305); Fundamental Research Funds for the Central Universities of Nanjing Agricultural University(KYDZ201904); Qing-Lan Project of Jiangsu Provincial Department of Education

Abstract

Dendralenes, also known as acyclic, branched and cross-conjugated polyenes, represent an important class of hydrocarbons. Serving as basic motifs for a number of natural products and photolectric materials as well as key intermediates in the rapid synthesis of polycyclic compounds, dendralenes have recently played a prominent part in the area of material chemistry, polymer chemistry, synthetic chemistry and so on. The study on dendralenes has long been neglected but received renewed attention and witnessed rapid development in recent years. The advanced syntheses of dendralenes in the last decade are summarized and organized in order of the number of conjugated units. The synthetic design and mechanism are highlighted in this review with their future development on synthesis and application proposed as well.

Cite this article

Jie Zhu , Wenchao Yang , Chengyun Zhang , Lei Wu . Recent Progress in the Synthesis of Dendralenes: A Decade Update[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1081 -1097 . DOI: 10.6023/cjoc202008024

References

[1]
(a) Hopf, H. Angew. Chem.. Int. Ed. 1984, 23, 948.
[1]
(b) Hopf, H. Nature 2009, 460, 183.
[1]
(c) Hopf, H. Angew. Chem., Int. Ed. 2001, 40, 705.
[1]
(d) Sherburn, M. S. Acc. Chem. Res. 2015, 48, 1961.
[1]
(e) Hopf, H.; Sherburn, M. S. Cross Conjugation-Modern Dendralene, Radialene and Fulvene Chemistry, Wiley-VCH, Verlag GmbH & Co. KGaA, 2016.
[2]
Hopf, H. Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives, Wiley-VCH, Weinheim, 2000, p. 103.
[3]
Paul, R.; Tchelitcheff, S. C. R. Hebd. Seances Acad. Sci. 1951, 232, 1939.
[4]
(a) Bolmquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 81;.
[4]
(b) Bailey, W. J.; Ecomomy, J. J. Am. Chem. Soc. 1955, 77, 1133;.
[4]
(c) Bailey, W. J.; Nielsen, N. A. J. Org. Chem. 1962, 27, 3088.
[5]
(a) Bradford, T. A.; Payne, A. D.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. J. Org. Chem. 2010, 75, 491.
[5]
(b) Hopf, H.; Sherburn, M. S. Angew. Chem.. Int. Ed. 2012, 51, 2298.
[5]
(c) Naidua, G. S.; Singh, R. Ghosh, S. K. Synlett 2018, 29, 282.
[6]
Fielder, S.; Rowan, D. D.; Sherburn, M. S. Angew. Chem., Int. Ed. 2000, 39, 4331.
[7]
Brummond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186.
[8]
Miller, N. A.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem., Int. Ed. 2007, 46, 937.
[9]
Payne, A. D.; Bojase, G.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem., Int. Ed. 2009, 48, 4836.
[10]
(a) Stehling, L.; Wilke, G. Angew. Chem.. Int. Ed. 1988, 27, 571.
[10]
(b) Payne, A. D.; Willis, A. C.; Sherburn, M. S. J. Am. Chem. Soc. 2005, 127, 12188.
[10]
(c) Pellissier, H. Tetrahedron 2005, 61, 6479.
[10]
(d) Frontier, A. J.; Collison, C. Tetrahedron 2005, 61, 7577.
[10]
(e) Tius, M. A. Eur. J. Org. Chem. 2005,2193.
[10]
(f) Pronin, S. V.; Shenvi, R. A. J. Am. Chem. Soc. 2012, 134, 19604;. 39ef1d2f-797f-4223-b3ac-b34dd9f23b4f
[10]
(g) Fallon, T.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. J. Org. Chem. 2014, 79, 3185.
[10]
(h) Desfeux, C.; Besnard, C.; Mazet, C. Org. Lett. 2020, 22, 8181.
[11]
(a) Bloomquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 81.
[11]
(b) Bailey, W. J.; Economy, J. J. Am. Chem. Soc. 1955, 77, 1133.
[11]
(c) Bloomquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 1806.
[11]
(d) Bailey, W. J.; Cunov, C. H.; Nicholas, L. J. Am. Chem. Soc. 1955, 77, 2787.
[11]
(e) Martin, H. D.; Echert-Macsic, M.; Mayer, B. Angew. Chem.. Int. Ed. 1980, 19, 807.
[11]
(f) Hopf, H. Angew. Chem.. Int. Ed. 1982, 21, 286.
[11]
(g) Hopf, H. Angew. Chem.. Int. Ed. 1984, 96, 947.
[11]
(h) Brain, P. T.; Smart, B. A.; Robertson, H. E.; Davis, M. J.; H. Rankin, D. W.; Henry, W. J.; Gosney, I. J. Org. Chem. 1997, 62, 2767.
[11]
(i) Woo, S.; Squires, N.; Fallis, A. G. Org. Lett. 1999, 1, 573.
[11]
(j) Woo, S.; Legoupy, S.; Parra, S.; Fallis, A. G. Org. Lett. 1999, 1, 1013.
[11]
(k) Le N?tre, J.; Martinez,, A. A.; Dixneuf,, P. H.; Bruneau,, C. Tetrahedron 2003, 59, 9425.
[11]
(l) Park, S.; Lee, D. Synthesis 2007,2313.
[12]
(a) Shimizu, M.; Kurahashi, T.; Shimono, K.; Tanaka, K.; Nagao, I.; Kiyomoto, S.; Hiyama, T. Chem.-Asian J. 2007, 2, 1400.
[12]
(b) Bojase, G.; Payne, A. D.; Willis, A. C.; Sherburn, M. S. Angew. Chem.. Int. Ed. 2008, 47, 910.
[13]
George, J.; Ward, J. S.; Sherburn, M. S. Chem. Sci. 2019, 10, 9969.
[14]
Ghosh, S. K.; Singh, R.; Date, S. M. Chem. Commun. 2003,636.
[15]
Singh, R.; Ghosh, S. K. Chem. Commun. 2011, 47, 10809.
[16]
(a) Singh, R.; Naidu, G. S.; Ghosh, S. K. Proc. Natl. Acad. Sci.. India, Sect. A Phys. Sci. 2016, 86, 619.
[16]
(b) Naidu, G. S.; Singh, R.; Kumarb, M.; Ghosh, S. K. RSC Adv. 2016, 6, 37136.
[17]
Rahif, M.; Roux, M.; Thibonnet, J.; Parrain, J.-L. Mol. Diversity 2013, 17, 49.
[18]
(a) Ma, S. Chem. Rev. 2005, 105, 2829.
[18]
(b) Ye, J.; Ma, S. Acc. Chem. Res. 2014, 47, 989.
[18]
(c) Jia, M.; Ma, S. Angew. Chem.. Int. Ed. 2016, 55, 9134.
[19]
Wang, H.; Beiring, B.; Yu, D.-G.; Collins, K. D.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12430.
[20]
Qiu, Y.; Posevins, D.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2017, 56, 13112.
[21]
Zhang, T.; Song, C.; Meng, Y.; Chen, P.; Xu, H.; Chang, J. J. Org. Chem. 2017, 82, 9905.
[22]
(a) Lu, X.-Y.; Zhang, C.-M.; Xu, Z.-R. Acc. Chem. Res. 2001, 34, 535.
[22]
(b) Cowen, B. J.; Miller, C. J. Chem. Soc. Rev. 2009, 38, 3102.
[22]
(c) Pei, C.-K. Shi, M. Chem.-Eur. J. 2012, 18, 6712. 42d445b1-4d74-44a8-ae66-c143c537e548
[23]
(a) Yang, Y.; Qiu, X.; Zhao, Y.; Mu, Y.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 495.
[23]
(b) Yang, Y.; Li, R.; Zhao, Y.; Zhao, D.; Shi, Z. J. Am. Chem. Soc. 2016, 138, 8743.
[24]
Mao, M.; Zhang, L.; Chen, Y.-Z.; Zhu, J.; Wu, L. ACS Catal. 2017, 7, 181.
[25]
Xia, Y.-T.; Xie, X.-Y.; Cui, S.-H.; Ji, Y.-G.; Wu, L. Chem. Commun. 2019, 55, 11699.
[26]
Xia, Y.-T.; Wu, J.-J.; Zhang, C.-Y.; Mao, M.; Ji, Y.-G.; Wu, L. Org. Lett. 2019, 21, 6383.
[27]
Rivera-Chao, E.; Fa?anás-Mastral, M. Angew. Chem., Int. Ed. 2018, 57, 9945.
[28]
Li, H.; Gontla, R.; Flegel, J.; Merten, C.; Ziegler, S.; Antonchick, A. P.; Waldmann, H. Angew. Chem., Int. Ed. 2019, 58, 307.
[29]
Frank, B. B.; Kivala, M.; Blanco, B. C.; Breiten, B.; Schweizer, W. B.; Laporta, P. R.; Biaggio, I.; Jahnke, E.; Tykwinski, R. R.; Boudon, C.; Gisselbrecht, J.-P.; Diederich, F. Eur. J. Org. Chem. 2010,2487.
[30]
Yamauchi, T.; Shibata, Y.; Aki, T.; Yoshimura, A.; Yao, M.; Misaki, Y. Chem. Lett. 2018, 47, 1176.
[31]
Januszewski, J. A.; Hampel, F.; Neiss, C.; G?rling, A.; Tykwinski, R. R. Angew. Chem., Int. Ed. 2014, 53, 3743.
[32]
Saglam, M. F.; Fallon, T.; Paddon-Row, M. N.; Sherburn, M. S. J. Am. Chem. Soc. 2016, 138, 1022.
[33]
Polák, P.; Tobrman, T. Eur. J. Org. Chem. 2019,957.
[34]
Lippincott, D. J.; Linstadt, R. T. H.; Maser, M. R.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2017, 56, 847.
[35]
(a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[35]
(b) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586.
[35]
(c) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271.
[35]
(d) Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005, 127, 5766.
[35]
(e) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
[36]
Deng, Y.; Bartholomeyzik, T.; Persson, A. K. ?.; Sun, J.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2012, 51, 2703.
[37]
Deng, Y.; Bartholomeyzik, T.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2013, 52, 6283.
[38]
Bartholomeyzik, T.; Pendrill, R.; Lihammar, R.; Jiang, T.; Widmalm, G.; B?ckvall, J.-E. J. Am. Chem. Soc. 2018, 140, 298.
[39]
Volla, C.; M., R.; Ba?ckvall, J.-E. Angew. Chem., Int. Ed. 2013, 52, 14209.
[40]
Volla, C. M. R.; Mazuela, J.; Ba?ckvall, J.-E. Chem.-Eur. J. 2014, 20, 7608. 612af94e-9bb6-475a-b483-a43afb87ebb1
[41]
Yang, B.; Qiu, Y.; B?ckvall, J.-E. Acc. Chem. Res. 2018, 51, 1520.
[42]
Volla, C. M. R.; B?ckvall, J.-E. ACS Catal. 2016, 6, 6398.
[43]
Zhu, C.; Yang, B.; Qiu, Y.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2016, 55, 14405.
[44]
Naidu, V. R.; Posevins, D.; Volla, C. M. R.; B?ckvall, J.-E. Angew. Chem., Int. Ed. 2017, 56, 1590.
[45]
Jonek, A.; Berger, S.; Haak, E. Chem.-Eur. J. 2012, 18, 15504. 626a977e-2498-4edb-bb1b-ae34a1d2499a
[46]
Thies, N.; Haak, E. Angew. Chem., Int. Ed. 2015, 54, 4097.
[47]
Sakashita, K.; Shibata, Y.; Tanaka, K. Angew. Chem., Int. Ed. 2016, 55, 6753.
[48]
Li, L.; Luo, P.; Deng, Y.; Shao, Z. Angew. Chem., Int. Ed. 2019, 58, 4710.
Outlines

/