ARTICLES

Synthesis of 2-Pyrenylphosphines via Phospho-Fries Rearrangement

  • Xinchan Lan ,
  • Lili Wang ,
  • Zheng Duan ,
  • Fran?ois Mathey
Expand
  • 1 International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, International Phosphorus Laboratory, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001
* Corresponding authors. E-mail: ;

Received date: 2020-09-28

  Revised date: 2020-11-03

  Online published: 2020-11-12

Supported by

National Natural Science Foundation of China(21672193); National Natural Science Foundation of China(21272218); Ministry of Industry and Information Technology(Z135060009002); Postdoctoral Research Grant in Henan Province(001803004); Key Scientific and Technological Project of Henan Province(202102310327); Programme of Introducing Talents of Discipline to Universities (111 project)(D20003); Zhengzhou University

Abstract

The planarity and high fluorescence quantum yield of pyrene make it an important building block in organic optoelectronic material. But 2-pyrene based conjugated materials are less developed due to the intrinsic low reactivity of 2-position. A series of (1-hydroxy)-2-pyrenylphosphine derivatives were synthesized from pyrenyl phosphates via phospho-Fries rearrangement under mild conditions. The pyrenyl phosphate precursors could be easily obtained from the reaction of 1-pyrenol with H-phosphonates or phosphine chlorides. Several pyrenyl phosphates were converted into new pyrene fused 1,3-oxaphospholes from the further reactions with N-arylimide chlorides. This research provides not only a convenient method for the funcationalization of pyrene at 2-position but also new organophosphorus based π-conjugated molecules. The absorption and emission properties of these new pyrene fused molecules were studied.

Cite this article

Xinchan Lan , Lili Wang , Zheng Duan , Fran?ois Mathey . Synthesis of 2-Pyrenylphosphines via Phospho-Fries Rearrangement[J]. Chinese Journal of Organic Chemistry, 2021 , 41(3) : 1153 -1160 . DOI: 10.6023/cjoc202009056

References

[1]
(a) Figueira-Duarte, T. M.; Mu?llen, K. Chem. Rev. 2011, 111, 7260.
[1]
(b) Lorbach, D.; Wagner, M.; Baumgarten, M.; Mu?llen, K. Chem. Commun. 2013, 49, 10578.
[1]
(c) Zhang, S. Q.; Qiao, X. L.; Chen, Y.; Wang, Y. Y.; Edkins, R. M.; Liu, Z. Q.; Li, H. X.; Fang, Q. Org. Lett. 2014, 16, 342.
[1]
(d) Mateo-Alonso, A. Chem. Soc. Rev. 2014, 43, 6311.
[1]
(e) Cariati, E.; Botta, C.; Danelli, S. G.; Forni, A.; Giaretta, A.; Giovanella, U.; Lucenti, E.; Marinotto, D.; Righetto, S. Ugo, R. Chem. Commun. 2014, 50, 14225.
[1]
(f) Liu, J. Z.; Narita, A.; Osella, S.; Zhang, W.; Schollmeyer, D.; Beljonne, D.; Feng, X. L.; Mu?llen, K. J. Am. Chem. Soc. 2016, 138, 2602.
[1]
(g) Krzeszewski, M.; Sahara, K.; Poronik, Y. M.; Kubo, T.; Gryko, D. T. Org. Lett. 2018, 20, 1517.
[1]
(h) Fu, C. X.; Luo, S.; Li, Z. Z..; Ai, X.; Pang, Z. G.; Li, C.; Chen, K.; Zhou, L.; Li, F.; Huang, Y.; Lu, Z. Y. Chem. Commun. 2019, 55, 6317.
[1]
(i) Ascherl, L.; Evans, E. W.; Gorman, J.; Orsborne, S.; Bessinger, D.; Bein, T.; Friend, R. H.; Auras, F. J. Am. Chem. Soc. 2019, 141, 15693.
[1]
(j) Shao, J.-Y.; Yang, N.; Guo, W.; Cui, B.-B.; Chen, Q.; Zhong, Y.-W. Chem. Commun. 2019, 55, 13406.
[1]
(k) Takaishi, K.; Iwachidoo, K.; Ema, T. J. Am. Chem. Soc. 2020, 142, 1774.
[1]
(l) Wang, B. B.; Zhang, F.; Wang, S. K.; Yang, R. J.; Chen, C. C.; Zhao, W. Chem. Commun. 2020, 56, 2598.
[1]
(m) Chen, Y.; Wang, Y. Y.; Yu, P.; Liu, Z. Q.; Fang, Q. Chin. J. Org. Chem. 2012, 32, 589. (in Chinese).
[1]
(陈莹, 王园园, 于萍, 刘志强, 方奇, 有机化学, 2012, 32, 589.)
[1]
(n) Zhong, K. L.; Guo, B. F.; Zhou, X.; Cai, K. D.; Tang, L. J.; Jin, L. Y. Prog. Chem. 2015, 27, 1230. (in Chinese).
[1]
(钟克利, 郭宝峰, 周雪, 蔡克迪, 汤立军, 金龙一, 化学进展, 2015, 27, 1230.)
[1]
(o) Gong, Y. B.; Zhan, X. J.; Li, Q. Q.; Li, Z. Sci. China: Chem. 2016, 59, 1623.
[2]
(a) Hu, J.; Yip, J. H. K.; Ma, D.-L.; Wong, K.-Y.; Chung, W.-H. Organometallics 2009, 28, 51.
[2]
(b) Hu, J. A.; Nguyen, M.-H.; Yip, J. H. K. Inorg. Chem. 2011, 50, 7429.
[2]
(c) Deng, M.; Schley, N. D.; Ung, G. Inorg. Chem. 2018, 57, 15399.
[3]
(a) Chua, C. J.; Ren, Y.; Baumgartner, T. Organometallics 2012, 31, 2425.
[3]
(b) Behm, K.; Essner, J. B.; Barnes, C. L.; Baker, G. A.; Walensky, J. R. Dalton Trans. 2017, 46, 10867.
[4]
(a) Akasaka, K.; Suzuki, T.; Ohrui, H.; Meguro, H. Anal. Lett. 1987, 20, 731.
[4]
(b) Akasaka, K.; Ohata, A.; Ohrui, H.; Meguro, H. J. Chromatogr. B 1995, 665, 37.
[4]
(c) Ohshima, T.; Hopia, A.; German, J. B.; Frankel, E. N. Lipids 1996, 31, 1091.
[4]
(d) Shioji, K.; Oyama, Y.; Okuma, K.; Nakagawa, H. Bioorg. Med. Chem. Lett. 2010, 20, 3911.
[4]
(e) Fang, Q. Y.; Li, J. W.; Li, S. Y.; Duan, R. H.; Wang, S. Q.; Yi, Y. P.; Guo, X. D.; Qian, Y.; Huang, W.; Yang, G. Q. Chem. Commun. 2017, 53, 5702.
[4]
(f) Xing, C.; Liu, J. X.; Chen, F.; Li, Y. Y.; Lv, C. J.; Peng, Q. C.; Hou, H. W.; Li, K. Chem. Commun. 2020, 56, 4220.
[5]
(a) Oyamada, T.; Sasabe, H.; Adachi, C.; Murase, S.; Tominaga, T.; Maeda, C. Appl. Phys. Lett. 2005, 86, 033503.
[5]
(b) Matsushima, T.; Adachi, C. Thin Solid Films 2008, 516, 4288.
[5]
(c) Matsushima, T.; Adachi, C. J. Appl. Phys. 2008, 103, 034501.
[5]
(d) Mallesham, G.; Swetha, C.; Niveditha, S.; Mohanty, M. E.; Babu, N. J.; Kumar, A.; Bhanuprakash, K.; Rao, V. J. J. Mater. Chem. C 2015, 3, 1208.
[5]
(e) Lin, X.; Wegner, B.; Lee, K. M.; Fusella, M. A.; Zhang, F. Y.; Moudgil, K.; Rand, B. P.; Barlow, S.; Marder, S. R.; Koch, N.; Kahn, A. Nat. Mater. 2017, 16, 1209.
[6]
Qiu, L. Q.; Hu, W.; Wu, D.; Duan, Z.; Mathey, F. Org. Lett. 2018, 20, 7821.
[7]
(a) Melvin, L. S. Tetrahedron Lett. 1981, 22, 3375.
[7]
(b) Heinicke, J.; B?hle, I.; Tzschach, A. J. Organomet. Chem. 1986, 317, 11.
[7]
(c) Dhawan, B.; Redmore, D. J. Org. Chem. 1991, 56, 833.
[7]
(d) Li, S. S.; Wang, G. Q. Phosphorus Sulfur Relat. Elem. 1991, 61, 119.
[7]
(e) Paladino, J.; Guyard, C.; Thurieau, C.; Fauchère, J.-L. Helv. Chim. Acta 1993, 76, 2465.
[7]
(f) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem.. Int. Ed. 2004, 43, 2206.
[7]
(g) Jayasundera, K. P.; Watson, A. J.; Taylor, C. M. Tetrahedron Lett. 2005, 46, 4311.
[7]
(h) Yilmaz, E.; Bier, D.; Guillory, X.; Briels, J.; Ruiz-Blanco, Y. B.; Sanchez-Garcia, E.; Ottmann, C.; Kaiser, M. Chem.-Eur. J. 2018, 24, 13807.
[7]
(i) Korb, M.; Lang, H. Chem. Soc. Rev. 2019, 48, 2829.
[7]
(j) Patel, J. J.; Blackburn, T.; Alessi, M.; Sawinski, H.; Snieckus, V. Org. Lett. 2020, 22, 3860.
[7]
(k) Taylor, C. M.; Watson, A. J. Curr. Org. Chem. 2004, 8, 623.
[8]
Kenner, G. W.; Williams, N. R. J. Chem. Soc. 1955,522.
[9]
(a) Heinicke, J.; Tzschach, A. Z. Chem. 1980, 20, 342.
[9]
(b) Heinicke, J.; Tzschach, A. Phosphorus Sulfur Relat. Elem. 1985, 25, 345.
[10]
(a) Washington, M. P.; Gudimetla, V. B.; Laughlin, F. L.; Deligonul, N.; He, S.; Payton, J. L.; Simpson, M. C.; Protasiewicz, J. D. J. Am. Chem. Soc. 2010, 132, 4566.
[10]
(b) Washington, M. P.; Payton, J. L.; Simpson, M. C.; Protasiewicz, J. D. Organometallics 2011, 30, 1975.
[10]
(c) Laughlin, F.Li; Deligonul, N.; Rheingold, A. L.; Golen, J. A.; Laughlin, B. J.; Smith, R. C.; Protasiewicz, J. D. Organometallics 2013, 32, 7116. 888b2ca0-aaca-41d3-9521-80be05c0be74
[10]
(d) Wu, S. S.; Rheingold, A. L.; Protasiewicz, J. D. Chem. Commun. 2014, 50, 11036.
[10]
(e) Laughlin, F. L.; Rheingold, A. L.; Deligonul, N.; Laughlin, B. J.; Smith, R. C.; Higham, L. J.; Protasiewicz, J. D. Dalton Trans. 2012, 41, 12016.
[10]
(f) Wu, S. S.; Deligonal, N.; Protasiewicz, J. D. Dalton Trans. 2013, 42, 14866.
[11]
Yesilot, S.; Cosut, B.; Alidagi, H. A.; Hacivelioglu, F.; Oezpinar, G. A.; Kilic, A. Dalton Trans. 2014, 43, 3428.
Outlines

/