Transition-Metal-Catalyzed Cycloadditions for the Synthesis of Eight-Membered Carbocycles: an Update from 2010 to 2020

  • Wang Lu-Ning ,
  • Yu Zhi-Xiang
Expand
  • Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871

Received date: 2020-10-16

  Revised date: 2020-11-09

  Online published: 2020-11-12

Abstract

Eight-membered carbocycles are widely found in natural products with significant biological activities and other molecules ranging from perfumes to potential materials. Therefore, accessing these eight-membered carbocycle embedded molecules is important for drug discovery, biological investigation, fragrance industry, material development and many other fields. However, the synthesis of eight-membered carbocycles is still posing challenges to synthetic chemists. Hence, tremendous efforts have been endeavored by many leading chemists to discover and develop new reactions in order to synthesize eight-membered carbocycles. Among these reactions, transition-metal-catalyzed cycloadditions of [m+n], [m+n+o], [m+ n+o+p] have evolved as powerful tools to achieve this aim. This topic has been reviewed in 2010. Summarized here are many new developments in this field and applications of the previously developed reactions in natural product synthesis since then.

Cite this article

Wang Lu-Ning , Yu Zhi-Xiang . Transition-Metal-Catalyzed Cycloadditions for the Synthesis of Eight-Membered Carbocycles: an Update from 2010 to 2020[J]. Chinese Journal of Organic Chemistry, 2020 , 40(11) : 3536 -3558 . DOI: 10.6023/cjoc202010025

References

[1] (a) Petasis, N. A.; Patane, M. A. Tetrahedron 1992, 48, 5757.
(b) Mehta, G.; Singh, V. Chem. Rev. 1999, 99, 881.
(c) Yet, L. Chem. Rev. 2000, 100, 2963.
[2] Suffness, M. Taxol:Science and Applications, CRC Press, Boca Raton, FL, 1995.
[3] (a) Tang, Y.-Z.; Liu, Y.-H.; Chen, J.-X. Mini-Rev. Med. Chem. 2012, 12, 53.
(b) Shang, R.; Wang, J.; Guo, W.; Liang, J. Curr. Top. Med. Chem. 2013, 13, 3013.
(c) Goethe, O.; Heuer, A.; Ma, X.; Wang, Z.; Herzon, S. B. Nat. Prod. Rep. 2019, 36, 220.
[4] (a) Armanino, N.; Charpentier, J.; Flachsmann, F.; Goeke, A.; Liniger, M.; Kraft, P. Angew. Chem., Int. Ed. 2020, 59, 16310.
(b) Kraft, P.; Bajgrowicz, J. A.; Denis, C.; Fráter, G. Angew. Chem., Int. Ed. 2000, 39, 2980.
(c) Birkbeck, A. A. Challenges in the Synthesis of Natural and Non-Natural Volatiles. In The Chemistry and Biology of Volatiles, Ed.:Herrmann, A., John Wiley & Sons, Ltd., New York, 2010, pp. 173~193.
(d) Vesley, J. A.; Massie, S. N. US 3985769, 1976.
(e) Markert, T. WO 99/54430, 1998.
(f) Fráter, G.; Bajgrowicz, J. A.; Kraft, P. Tetrahedron 1998, 54, 7633.
(g) Granier, T.; Bajgrowicz, J. A.; Hanhart, A. US 7888309, 2011.
[5] (a) Martinez, H.; Ren, N.; Matta, M. E.; Hillmyer, M. A. Polym. Chem. 2014, 5, 3507.
(b) Hill, A. R.; Balogh, J.; Moncho, S.; Su, H.-L.; Tuba, R.; Brothers, E. N.; Al-Hashimi, M.; Bazzi, H. S. J. Polym. Sci., Part A:Polym. Chem. 2017, 55, 3137.
[6] For selected reviews for Diels-Alder reaction in synthesis, see:(a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T. Vassilikogiannakis. G. Angew. Chem., Int. Ed. 2002, 41, 1668.
(b) Takao, K.-I.; Munakata, R.; Tadano, K.-I. Chem. Rev. 2005, 105, 4779.
(c) Wessig, P.; Müller, G. Chem. Rev. 2008, 108, 2051.
(d) Funel, J.-A.; Abele, S. Angew. Chem., Int. Ed. 2013, 52, 3822.
(e) Jiang, X.; Wang, R. Chem. Rev. 2013, 113, 5515.
(f) Heravi, M. M.; Vavsari, V. F. RSC Adv. 2015, 5, 50890.
(g) Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926.
(h) Tasdelen, M. A. Polym. Chem. 2011, 2, 2133.
[7] Selected reviews for metal-catalyzed[4+2] reactions:(a) Reymond, S.; Cossy, J. Chem. Rev. 2008, 108, 5359.
(b) Carmona, D.; Lamata, M. P.; Oro, L. A. Coord. Chem. Rev. 2000, 200~202, 717.
(c) Wender, P. A.; Smith, T. E. Tetrahedron 1998, 54, 1255.
(d) Frühauf, H.-W. Chem. Rev. 1997, 97, 523.
(e) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007.
(f) Robinson, J. E. Modern Rhodium-Catalyzed Organic Reactions; Ed.:Evans, P. A., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005, pp. 241~262.
[8] (a) Ben-Shoshan, R.; Sarel, S. J. Chem. Soc. D 1969, 883.
(b) Victor, R.; Ben-Shoshan, R.; Sarel, S. Tetrahedron Lett. 1970, 4253.
(c) Sarel, S. Acc. Chem. Res. 1978, 11, 204.
(d) Aumann, R. J. Am. Chem. Soc. 1974, 96, 2631.
(e) Taber, D. F.; Kanai, K.; Jiang, Q.; Bui, G. J. Am. Chem. Soc. 2000, 122, 6807.
(f) Taber, D. F.; Joshi, P. V.; Kanai, K. J. Org. Chem. 2004, 69, 2268.
(g) Kurahashi, T.; de Meijere, A. Synlett 2005, 2619.
(h) Iwasawa, N.; Owada, Y.; Matsuo, T. Chem. Lett. 1995, 115.
(i) Owada, Y.; Matsuo, T.; Iwasawa, N. Tetrahedron 1997, 53, 11069.
(j) Murakami, M.; Itami, K.; Ubukata, M.; Tsuji, I.; Ito, Y. J. Org. Chem. 1998, 63, 4.
(k) Shu, D.; Li, X.; Zhang, M.; Robichaux, P. J.; Tang, W. Angew. Chem., Int. Ed. 2011, 50, 1346.
(l) Grabowski, N. A.; Hughes, R. P.; Jaynes, B. S.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1986, 1694.
(m) Cho, S. H.; Liebeskind, L. S. J. Org. Chem. 1987, 52, 2631.
(n) Semmelhack, M. F.; Ho, S.; Steigerwald, M.; Lee, M. C. J. Am. Chem. Soc. 1987, 109, 4397.
(o) Brancour, C.; Fukuyama, T.; Ohta, Y.; Ryu, I.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Chem. Commun. 2010, 46, 5470.
(p) Jiang, G.-J.; Fu, X.-F.; Li, Q.; Yu, Z.-X. Org. Lett. 2012, 14, 692.
(q) Li, X.; Song, W.; Tang, W. J. Am. Chem. Soc. 2013, 135, 16797.
(r) Fukuyama, T.; Ohta, Y.; Brancour, C.; Miyagawa, K.; Ryu, I.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Chem.-Eur. J. 2012, 18, 7243.
(s) Farley, C. M.; Sasakura, K.; Zhou, Y.-Y.; Kanale, V. V.; Uyeda, C. J. Am. Chem. Soc. 2020, 142, 4598.
[9] (a) Jiao, L.; Lin, M.; Zhuo, L.-G.; Yu, Z.-X. Org. Lett. 2010, 12, 2528.
(b) Mazumder, S.; Shang, D.; Negru, D. E.; Baik, M.-H.; Evans, P. A. J. Am. Chem. Soc. 2012, 134, 20569.
(c) Kim, S.; Chung, Y. K. Org. Lett. 2014, 16, 4352.
(d) Wang, J.; Hong, B.; Hu, D.; Kadonaga, Y.; Tang, R.; Lei, X. J. Am. Chem. Soc. 2020, 142, 2238.
[10] Selected reviews for metal-catalyzed[2+2+2] reactions:(a) Vollhardt, K. P. C. Angew. Chem., Int. Ed. 1984, 23, 539.
(b) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307.
(c) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741.
(d) Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430.
(e) Shibata, T.; Tsuchikama, K. Org. Biomol. Chem. 2008, 6, 1317.
(f) Li, C.; Zhang, H.; Feng, J.; Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 3082.
(g) Shaw, M. H.; Melikhova, E. Y.; Kloer, D. P.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc. 2013, 135, 4992.
[11] (a) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
(b) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446.
(c) Fürstner, A. Top. Catal. 1997, 4, 285.
(d) Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem., Int. Ed. 2006, 45, 2664.
(e) Maier, M. E. Angew. Chem., Int. Ed. 2000, 39, 2073.
(f) Michaut, A.; Rodriguez, J. Angew. Chem., Int. Ed. 2006, 45, 5740.
[12] Hu, Y.-J.; Li, L.-X.; Han, J.-C.; Min, L.; Li, C.-C. Chem. Rev. 2020, 120, 5910.
[13] (a) Liang, Y.; Jiang, X.; Yu, Z.-X. Chem. Commun. 2011, 47, 6659.
(b) Liang, Y.; Jiang, X.; Fu, X.-F.; Ye, S.; Wang, T.; Yuan, J.; Wang, Y.; Yu, Z.-X. Chem.-Asian J. 2012, 7, 593.
[14] (a) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95.
(b) Galli, C.; Mandolini, L. Eur. J. Org. Chem. 2000, 2000, 3117.
[15] Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
[16] Yu, Z.-X.; Wang, Y.; Wang, Y. Chem.-Asian J. 2010, 5, 1072.
[17] (a) Reed, H. W. B. J. Chem. Soc. 1954, 1931.
(b) Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H. Angew. Chem. 1955, 67, 426.
[18] Wender, P. A.; Ihle, N. C. J. Am. Chem. Soc. 1986, 108, 4678.
[19] Park, J. W.; Park, J. E.; Park, J. H.; Hong, M. R.; Kim, S. M.; Chung, Y. K.; Kim, C. H. Synlett 2016, 27, 455.
[20] Llorente, N.; Fernández-Pérez, H.; Bauzá, A.; Frontera, A.; Vidal-Ferran, A. Catal. Sci. Technol. 2018, 8, 5251.
[21] (a) tom Dieck, H.; Dietrich, J. Chem. Ber. 1984, 117, 694.
(b) tom Dieck, H.; Dietrich, J. Angew.Chem., Int. Ed. 1985, 24, 781.
(c) Mallien, M.; Haupt, E. T. K.; tom Dieck, H. Angew. Chem., Int. Ed. 1988, 27, 1062.
[22] Lee, H.; Campbell, M. G.; Sánchez, R. H.; Börgel, J.; Raynaud, J.; Parker, S. E.; Ritter, T. Organometallics 2016, 35, 2923.
[23] Kennedy, C. R.; Zhong, H. Y.; Macaulay, R. L.; Chirik, P. J. J. Am. Chem. Soc. 2019, 141, 8557.
[24] (a) Braconi, E.; Götzinger, A. C.; Cramer, N. J. Am. Chem. Soc. 2020, 142, 19819.
(b) Baldenius, K.-U.; tom Dieck, H.; König, W. A.; Icheln, D.; Runge, T. Angew. Chem., Int. Ed. 1992, 31, 305.
[25] Selected reviews for metal-catalyzed C-C bond activation of strained rings:(a) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100.
(b) Ruhland, K. Eur. J. Org. Chem. 2012, 2012, 2683.
(c) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
(d) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(e) Cleavage of Carbon-Carbon Single Bonds by Transition Metals, Eds.:Murakami, M.; Chatani, N., Wiley-VCH, Weinheim, Germany, 2016.
(f) Dong, G. C-C Bond Activation, In Topics in Current Chemistry, Eds.:Bayley, H.; Houk, K. N.; Hughes, G.; Hunter, C. A.; Ishihara, K.; Krische, M. J.; Lehn, J.-M.; Luque, R.; Olivucci, M.; Siegel, J. S.; Thiem, J.; Venturi, M.; Wong, C.-H.; Wong, H. N. C; You, S.-L.; Yam, V. W.-W.; Yan, C. Springer Verlag, Berlin and Heidelberg, Germany, 2014, DOI:10.1007/978-3-642-55055-3.
(g) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
(h) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
(i) Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423(in Chinese). (代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40, 1423.
[26] (a) Evans, J. A.; Everitt, G. F.; Kemmitt, R. D. W.; Russell, D. R. J. Chem. Soc., Chem. Commun. 1973, 158.
(b) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Blount, J. F. J. Organomet. Chem. 1980, 202, C73.
(c) Liebeskind, L. S.; Baysdon, S. L.; South, M. S.; Iyer, S.; Leeds, J. P. Tetrahedron 1985, 41, 5839.
(d) Huffman, M. A.; Liebeskind, L. S.; Pennington, W. T. Organometallics 1990, 9, 2194.
(e) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki, K.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 7142.
(f) Okumura, S.; Sun, F.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2017, 139, 12414.
(g) Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2012, 51, 7567.
(h) Xu, T.; Ko, H. M.; Savage, N. A.; Dong, G. J. Am. Chem. Soc. 2012, 134, 20005.
(i) Deng, L.; Chen, M.; Dong, G. J. Am. Chem. Soc. 2018, 140, 9652.
(j) Lu, G.; Fang, C.; Xu, T.; Dong, G.; Liu, P. J. Am. Chem. Soc. 2015, 137, 8274.
(k) Xu, T.; Savage, N. A.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 1891.
(l) Chen, P.-H.; Xu, T.; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 1674.
(m) Sun, T. W.; Zhang, Y.; Qiu, B.; Wang, Y.; Qin, Y.; Dong, G.; Xu, T. Angew. Chem., Int. Ed. 2018, 57, 2859.
(n) Deng, L.; Xu, T.; Li, H.; Dong, G. J. Am. Chem. Soc. 2016, 138, 369.
(o) Chen, P.-H.; Sieber, J.; Senanayake, C. H.; Dong, G. Chem. Sci. 2015, 6, 5440.
(p) Zhu, Z.; Li, X.; Chen, S.; Chen, P.-H.; Billett, B. A.; Huang, Z.; Dong, G. ACS Catal. 2018, 8, 845.
(q) Xu, Z.-Y.; Zhang, S.-Q.; Liu, J.-R.; Chen, P.-P.; Li, X.; Yu, H.-Z.; Hong, X.; Fu, Y. Organometallics 2018, 37, 592.
(r) Bender, M.; Turnbull, B. W. H.; Ambler, B. R.; Krische, M. J. Science 2017, 357, 779.
(s) Ambler, B. R.; Turnbull, B. W. H.; Suravarapu, S. R.; Uteuliyev, M. M.; Huynh, N. O.; Krische, M. J. J. Am. Chem. Soc. 2018, 140, 9091.
(t) Deng, L.; Dong, G. Trends in Chem. 2020, 2, 183.
[27] Juliá-Hernández, F.; Ziadi, A.; Nishimura, A.; Martin, R. Angew. Chem., Int. Ed. 2015, 54, 9537.
[28] Yang, S.; Xu, Y.; Li, J. Org. Lett. 2016, 18, 6244.
[29] Zou, H.; Wang, Z.-L.; Huang G. Chem.-Eur J. 2017, 23, 12593.
[30] Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Liebigs Ann. Chem. 1948, 560, 1.
[31] (a) Wender, P. A.; Christy, J. P. J. Am. Chem. Soc. 2007, 129, 13402.
(b) Wender, P. A.; Christy, J. P.; Lesser, A. B.; Gieseler, M. T. Angew. Chem., Int. Ed. 2009, 48, 7687.
[32] Chai, Z.; Wang, H.-F.; Zhao, G. Synlett 2009, 11, 1785.
[33] Nasrallah, D. J.; Croatt, M. P. Eur. J. Org. Chem. 2014, 2014, 3767.
[34] Greco, A.; Carbonar, A.; Dall'Asta, G. J. Org. Chem. 1970, 35, 271.
[35] Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2006, 128, 2166.
[36] Tao, J.-Y.; Fang, D.-C.; Chass, G. A. Phys. Chem. Chem. Phys. 2012, 14, 6937.
[37] Lainhart, B. C.; Alexanian, E. J. Org. Lett. 2015, 17, 1284.
[38] Gilbertson, S. R.; DeBoef, B. J. Am. Chem. Soc. 2002, 124, 8784.
[39] DeBoef, B.; Counts, W. R.; Gilbertson, S. R. J. Org. Chem. 2007, 72, 799.
[40] Canlas, G. M. R.; Gilbertson, S. R. Chem. Commun. 2014, 50, 5007.
[41] (a) Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N. J. Am. Chem. Soc. 2002, 124, 8782.
(b) Evans, P. A.; Baum, E. W. J. Am. Chem. Soc. 2004, 126, 11150.
(c) Evans, P. A.; Baum, E. W.; Fazal, A. N.; Pink, M. Chem. Commun. 2005, 63.
[42] Wender, P. A.; Christy, J. P. J. Am. Chem. Soc. 2006, 128, 5354.
[43] (a) Hilt, G.; Janikowski, J. Angew. Chem., Int. Ed. 2008, 47, 5243.
(b) Varela, J. A.; Castedo, L.; Saá, C. Org. Lett. 2003, 5, 2841.
[44] Yamasaki, R.; Ohashi, M.; Maeda, K.; Kitamura, T.; Nakagawa, M.; Kato, K.; Fujita, T.; Kamura, R.; Kinoshita, K.; Masu, H.; Azumaya, I.; Ogoshi, S.; Saito, S. Chem.-Eur J. 2013, 19, 3415.
[45] Jiménez, T.; Carreras, J.; Ceccon, J.; Echavarren, A. M. Org. Lett. 2016, 18, 1410.
[46] Davis, R. E.; Dodds, T. A.; Hseu, T. H.; Wagnon, J. C.; Devon, T.; Tancrede, J.; McKennis, J. S.; Pettit, R. J. Am. Chem. Soc. 1974, 96, 7562.
[47] D'yakonov, V. A.; Kadikova, G. N.; Dzhemilev, U. M. Russ. Chem. Rev. 2018, 87, 797.
[48] (a) Mach, K.; Antropiusová, H.; Sedmera, P.; Hanuš, V.; Tureček, F. J. Chem. Soc., Chem. Commun. 1983, 805.
(b) Mach, K.; Antropiusová, H.; Petrusová, L.; Hanuš, V.; Tureček, F.; Sedmera, P. Tetrahedron 1984, 40, 3295.
[49] D'yakonov, V. A.; Kadikova, G. N.; Dzhemilev, U. M. Tetrahedron Lett. 2011, 52, 2780.
[50] D'yakonov, V. A.; Kadikova, G. N.; Khalilov, L. M.; Dzhemilev, U. M. Russ. J. Org. Chem. 2013, 49, 1139.
[51] Dzhemilev, U. M.; Kadikova, G. N.; Kolokol'tsev, D. I.; D'yakonov, V. A. Tetrahedron 2013, 69, 4609.
[52] (a) D'yakonov, V. A.; Kadikova, G. N.; Kolokol'tsev, D. I.; Ramazanov, I. R.; Dzhemilev, U. M. J. Organomet. Chem. 2015, 794, 23.
(b) D'yakonov, V. A.; Kadikova, G. N.; Kolokol'tsev, D. I.; Ramazanov, I. R.; Dzhemilev, U. M. Eur. J. Org. Chem. 2015, 2015, 4464.
(c) D'yakonov, V. A.; Kadikova, G. N.; Nasretdinov, R. N.; Kolokol'tsev, D. I.; Dzhemilev, U. M. Tetrahedron Lett. 2017, 58, 1714.
(d) D'yakonov, V. A.; Kadikova, G. N.; Khalilov, L. M.; Dzhemilev, U. M. Russ. J. Org. Chem. 2018, 54, 832.
[53] Achard, M.; Tenaglia, A.; Buono, G. Org. Lett. 2005, 7, 2353.
[54] Achard, M.; Mosrin, M.; Tenaglia, A.; Buono, G. J. Org. Chem. 2006, 71, 2907.
[55] Clavier, H.; Le Jeune, K.; de Riggi, I.; Tenaglia, A.; Buono, G. Org. Lett. 2011, 13, 308.
[56] (a) D'yakonov, V. A.; Kadikova, G. N.; Gazizullina, G. F.; Khalilov, L. M.; Dzhemilev, U. M. Tetrahedron Lett. 2015, 56, 2005.
(b) D'yakonov, V. A.; Kadikova, G. N.; Gazizullina, G. F.; Dzhemilev, U. M. Russ. Chem. Bull. 2016, 65, 200.
[57] D'yakonov, V. A.; Kadikova, G. N.; Gazizullina, G. F.; Dzhemilev, U. M. ChemistrySelect 2018, 3, 6221.
[58] (a) D'yakonov, V. A.; Kadikova, G. N.; Nasretdinov,R. N.; Dzhemileva, L. U.; Dzhemilev, U. M. Eur. J. Org. Chem. 2020, 623.
(b) Kadikova, G. N.; D'yakonov, V. A.; Nasretdinov, R. N.; Dzhemileva, L. U.; Dzhemilev, U. M. Mendeleev Commun. 2020, 30, 318.
[59] Oonishi, Y.; Hosotani, A.; Sato, Y. J. Am. Chem. Soc. 2011, 133, 10386.
[60] Oonishi, Y.; Hosotani, A.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51, 11548.
[61] Liu, T.; Han, L.; Han, S.; Bi, S. Organometallics 2015, 34, 280.
[62] (a) Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470.
(b) Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503.
(c) Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X. Chem.-Eur J. 2008, 14, 4361.
(d) Liang, Y.; Zhou, H.; Yu, Z.-X. J. Am. Chem. Soc. 2009, 131, 17783.
(e) Liang, Y.; Liu, S.; Yu, Z.-X. Synlett 2009, 905.
(f) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48, 3617.
(g) González, I.; Pla-Quintana, A.; Roglans, A.; Dachs, A.; Solà, M.; Parella, T.; Farjas, J.; Roura, P.; Lloveras, V.; Vidal-Gancedo, J. Chem. Commun. 2010, 46, 2944.
(h) Zhao, L.; Wen, M.; Wang, Z.-X. Eur. J. Org. Chem. 2012, 19, 3587.
[63] Faustino, H.; Alonso, I.; Mascareñas, J. L.; López, F. Angew. Chem., Int. Ed. 2013, 52, 6526.
[64] Faustino, H.; Bernal, P.; Castedo, L.; López, F.; Mascareñas, J. L. Adv. Synth. Catal. 2012, 354, 1658.
[65] (a) Rigby, J. H.; Henshilwood, J. A. J. Am. Chem. Soc. 1991, 113, 5122.
(b) Rigby, J. H.; Ateeq, H. S.; Charles, N. R.; Henshilwood, J. A.; Short, K. M.; Sugathapala, P. M. Tetrahedron 1993, 49, 5495.
(c) Rigby, J. H.; Ahmed, G.; Ferguson, M. D. Tetrahedron Lett. 1993, 34, 5397.
(d) Rigby, J. H.; Sandanayaka, V. P. Tetrahedron Lett. 1993, 34, 935.
(e) Rigby, J. H.; Pigge, F. C.; Ferguson, M. D. Tetrahedron Lett. 1994, 35, 8131.
(f) Rigby, J. H.; Sugathapala, P.; Heeg, M. J. J. Am. Chem. Soc. 1995, 117, 8851.
(g) Rigby, J. H.; Kondratenko, M. A.; Fiedler, C. Org. Lett. 2000, 2, 3917.
(h) Rigby, J. H.; Laurent, S. B.; Kamal, Z.; Heeg, M. J. Org. Lett. 2008, 10, 5609.
[66] Rigby, J. H.; Kirova-Snover, M. Tetrahedron Lett. 1997, 38, 8153.
[67] De, S.; Misra, S.; Rigby, J. H. Org. Lett. 2015, 17, 3230.
[68] Magauer, T.; Mulzer, J.; Tiefenbacher, K. Org. Lett. 2009, 11, 5306.
[69] Yao, Z.-K.; Li, J.; Yu, Z.-X. Org. Lett. 2011, 13, 134.
[70] Wang, Y.; Wang, J.; Su, J.; Huang, F.; Jiao, L.; Liang, Y.; Yang, D.; Zhang, S.; Wender, P. A.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.
[71] Jiang, G.-J.; Fu, X.-F.; Li, Q.; Yu, Z.-X. Org. Lett. 2012, 14, 692.
[72] Fu, X.-F.; Xiang, Y.; Yu, Z.-X. Chem.-Eur J. 2015, 21, 4242.
[73] Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 2876.
[74] Wang, Y.; Yu, Z.-X. Acc. Chem. Res. 2015, 48, 2288.
[75] Fan, X.; Zhuo, L.-G.; Tu, Y. Q.; Yu, Z.-X. Tetrahedron 2009, 65, 4709.
[76] Jiao, L.; Yuan, C.; Yu, Z.-X. J. Am. Chem. Soc. 2008, 130, 4421.
[77] Yuan, C.; Jiao, L.; Yu, Z.-X. Tetrahedron Lett. 2010, 51, 5674.
[78] (a) Schuda, P. F.; Phillips, J. L.; Morgan, T. M. J. Org. Chem. 1986, 51, 2742.
(b) Nishida, M.; Iseki, K.; Shibasaki, M.; Ikegami, S. Chem. Pharm. Bull. 1990, 38, 3230.
(c) Banwell, M. G.; Austin, K. A. B.; Willis, A. C. Tetrahedron 2007, 63, 6388.
[79] Fan, X.; Liu, C.-H.; Yu, Z.-X. Rhodium(I)-Catalyzed Cycloadditions Involving Vinylcyclopropanes and Their Derivatives. In Rhodium Catalysis in Organic Synthesis, Ed.:Tanaka, K., Wiley-VCH, Weinheim, Germany, 2019, pp. 229~276.
Outlines

/