ACCOUNT

Chiral Bifunctional Chalcogenide-Catalyzed Enantioselective Electrophilic Thiofunctionalization of Alkenes

  • Quanbin Jiang ,
  • Xiaodan Zhao
Expand
  • 1 Institute of Organic Chemistry & Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education,School of Chemistry, Sun Yat-Sen University, Guangzhou 510275

Received date: 2020-10-05

  Revised date: 2020-11-03

  Online published: 2020-12-05

Supported by

the National Natural Science Foundation of China(21901261); the National Natural Science Foundation of China(21772239); the China Postdoctoral Science Foundation(2018M633207); the Fundamental Research Funds for the Central Universities(20lgzd21); the Fundamental Research Funds for the Central Universities(20lgpy81)

Abstract

Chiral organosulfur compounds have a wide range of applications in the fields of medicinal chemistry and asymmetric synthesis. The development of new methods for the preparation of these compounds is an important task in organic synthetic chemistry. Enantioselective electrophilic thiolation of alkenes has emerged as a straightforward pathway for the synthesis of chiral sulfides. By this fashion, both the thio group and another valuable functional group can be introduced simultaneously into the parent alkene molecules. We designed and synthesized a series of chiral bifunctional chalcogenide catalysts and successfully applied them to intra- and inter-molecular enantioselective trifluoromethylthiolation, alkylthiolation, arylthiolation of different kinds of alkenes. A variety of chiral sulfides were obtained with high enantioselectivities. The recent advances in chiral bifunctional chalcogenide catalyzed enantioselective thiofunctionalization of alkenes developed by our group are summarized, and the prospect of this field is also discussed.

Cite this article

Quanbin Jiang , Xiaodan Zhao . Chiral Bifunctional Chalcogenide-Catalyzed Enantioselective Electrophilic Thiofunctionalization of Alkenes[J]. Chinese Journal of Organic Chemistry, 2021 , 41(2) : 443 -454 . DOI: 10.6023/cjoc202010005

References

[1]
(a) Parry R.J. Tetrahedron 1983, 39, 1215.
[1]
(b) Nudelman A. The Chemistry of Optically Active Sulfur Compounds, Gordon and Breach, New York, 1984.
[1]
(c) Anne C.; Turcaud S.; Quancard J.; Teffo F.; Meudal H.; Fournié-Zaluski M.-C.; Roques B.P. J. Med. Chem. 2003, 46, 4648.
[1]
(d) McGrath N.A.; Brichacek M.; Njardarson J.T. J. Chem. Educ. 2010, 87, 1348.
[1]
(e) Ilardi E.A.; Vitaku E.; Njardarson J.T. J. Med. Chem. 2014, 57, 2832.
[1]
(f) Feng M.; Tang B.; Liang S.H.; Jiang X. Curr. Top. Med. Chem. 2016, 16, 1200.
[1]
(g) Scott K.A.; Njardarson J.T. Top. Curr. Chem. 2018, 376, 5.
[2]
(a) Counts G.W.; Gregory D.; Zeleznik D.; Turck M. Antimicrob. Agents Chemother. 1977, 11, 708.
[2]
(b) Yagupolskii L.M.; Maletina I.I.; Petko K.I.; Fedyuk D.V.; Handrock R.; Shavaran S.S.; Klebanov B.M.; Herzig S. J. Fluorine Chem. 2001, 109, 87.
[2]
(c) Pommier P.; Ke?ta A.; Wessel-Robert S.; Dellac B.; Mundt H.C. Rev. Med. Vet. 2003, 154, 41.
[3]
Chatgilialoglu C.; Asmus K.D. Sulfur - Centered Reactive Intermediates in Chemistry and Biology, Springer Verlag, New York, 1991.
[3]
(b) Masdeu-Bultó A.M.; Diéguez M.; Martin E.; Gómez M. Coord. Chem. Rev. 2003, 242, 159.
[3]
(c) Otocka S; Kwiatkowska M.; Madalińska L.; Kie?basiński P. Chem. Rev. 2017, 117, 4147.
[4]
(a) Kondo T.; Mitsudo T.-A. Chem. Rev. 2000, 100, 3205.
[4]
(b) Clayden J.; MacLellan P. Beilstein J. Org. Chem. 2011, 7, 582.
[4]
(c) Chauhan P.; Mahajan S.; Enders D. Chem. Rev. 2014, 114, 8807.
[4]
(d) Yu J.-S.; Huang H.-M.; Ding P.-G.; Hu X.-S.; Zhou F.; Zhou J. ACS Catal. 2016, 6, 5319.
[5]
(a) Prit?ius A.B.; Breit B. Angew. Chem. Int. Ed. 2015, 54, 3121.
[5]
(b) Kennemur J.L.; Kortman G.D.; Hull K.L. J. Am. Chem. Soc. 2016, 138, 11914.
[5]
(c) Yang X.-H.; Davison R.T.; Dong V.M. J. Am. Chem. Soc. 2018, 140, 10443.
[5]
(d) Yang X.-H.; Davison R.; Nie S.-Z.; Cruz F.A.; McGinnis T.M.; Dong V.M. J. Am. Chem. Soc. 2019, 141, 3006.
[6]
(a) Liu Y.; Sun B.; Wang B.; Wakem M.; Deng L. J. Am. Chem. Soc. 2009, 131, 418.
[6]
(b) Hui Y.; Jiang J.; Wang W.; Chen W.; Cai Y.; Lin L.; Liu X.; Feng X. Angew. Chem. Int. Ed. 2010, 49, 4290.
[6]
(c) White J. D.; Shaw, S.Chem. Sci. 2014, 5, 2200.
[6]
(d) Yang J.; Farley A. J. M.; Dixon D.J. Chem. Sci. 2017, 8, 606.
[6]
(e) Formica M.; Sorin G.; Farley A. J. M.; Díaz J.; Paton R.S.; Dixon D.J. Chem. Sci. 2018, 9, 6969.
[7]
(a) Zhao G.-L.; Rios R; Vesely J.; Eriksson L.; Córdova A. Angew. Chem. Int. Ed. 2008, 47, 8468.
[7]
(b) Denmark S.E.; Vogler T. Chem.- Eur. J. 2009, 15, 11737.
[7]
(c) Mizar P.; Niebuhr R.; Hutchings M.; Farooq U.; Wirth T. Chem.- Eur. J. 2016, 22, 1614.
[8]
(a) Marigo M.; Wabnitz T.C.; Fielenbach D.; J?rgensen K.A. Angew. Chem. Int. Ed. 2005, 44, 794.
[8]
(b) Franzén J.; Marigo M.; Fielenbach D.; Wabnitz T.C.; Kj?rsgaard A.; J?rgensen K.A. J. Am. Chem. Soc. 2005, 127, 18296.
[8]
(c) Armstrong A.; Challinor L.; Moir J.H. Angew. Chem. Int. Ed. 2007, 46, 5369.
[8]
(d) Fang L.; Lin A.; Hu H.; Zhu C. Chem.- Eur. J. 2009, 15, 7039.
[8]
(e) Li X.; Liu C.; Xue X.-S.; Cheng J.-P. Org. Lett. 2012, 14, 4374.
[8]
(f) Han Z.; Chen W.; Dong S.; Yang C.; Liu H.; Pan Y.; Yan L.; Jiang Z. Org. Lett. 2012, 14, 4670.
[9]
(a) Denmark S.E.; Kuester W.E.; Burk M.T. Angew. Chem. Int. Ed. 2012, 51, 10938.
[9]
(b) Cheng Y.A.; Yu W.Z.; Yeung Y.-Y. Org. Biomol. Chem. 2014, 12, 2333.
[9]
(c) Sakakura A.; Ishihara K. Chem. Rec. 2015, 15, 728.
[9]
(d) Cresswell A.J.; Eey S.T.-C.; Denmark S.E. Angew. Chem. Int. Ed. 2015, 54, 15642.
[9]
(e) Gieuw M.H.; Ke Z.; Yeung Y.-Y. Chem. Rec. 2017, 17, 287.
[9]
(f) Landry M.L.; Burns N.Z. Acc. Chem. Res. 2018, 51, 1260.
[10]
(a) Luo J.; Liu X.; Zhao X. Synlett 2017, 28, 397.
[10]
(b) Matviitsuk A.; Panger J.L.; Denmark S.E. Angew. Chem. Int. Ed. 2020, 59, 19796.
[11]
(a) Archer N.J.; Rayner C.M.; Bell D.; Miller D. Synlett 1994, 617.
[11]
(b) Lucchini V.; Modena G.; Pasquato L. J. Chem. Soc. Chem. Commun. 1994, 1565.
[12]
(a) Guan H.; Wang H.; Huang D.; Shi Y. Tetrahedron 2012, 68, 2728.
[12]
(b) Li L.; Li Z.; Huang D.; Wang H.; Shi Y. RSC Adv. 2013, 3, 4523.
[13]
(a) Denmark S.E.; Kornfilt D. J. P.; Vogler T. J. Am. Chem. Soc. 2011, 133, 15308.
[13]
(b) Denmark S.E.; Jaunet A. J. Am. Chem. Soc. 2013, 135, 6419.
[13]
(c) Denmark S.E.; Chi H.M. J. Am. Chem. Soc. 2014, 136, 8915.
[13]
(d) Denmark S.E.; Hartmann E.; Kornfilt D. J. P.; Wang H. Nat. Chem. 2014, 6, 1056.
[13]
(e) Tao Z.; Robb K.A.; Zhao K.; Denmark S. E.J. Am. Chem. Soc. 2018, 140, 3569.
[13]
(f) Roth A.; Denmark S.E. J. Am. Chem. Soc. 2019, 141, 13767.
[13]
(g) Matviitsuk A.; Denmark S.E. Angew. Chem. Int. Ed. 2019, 58, 12486.
[13]
(h) Xie Y.-Y.; Chen Z.-M.; Luo H.-Y.; Shao H.; Tu Y.-Q.; Bao X.; Cao R.-F. Zhang S.-Y.; Tian J.-M. Angew. Chem. Int. Ed. 2019, 58, 12491.
[14]
Denmark S.E.; Collins W.R.; Cullen M.D. J. Am. Chem. Soc. 2009, 131, 3490.
[15]
Hiyama T. Organofluorine Compounds : Chemistry and Applications, Springer, New York, 2000.
[15]
(b) Kirsch P. Modern Fluoroorganic Chemistry : Synthesis Reactivity, Applications, Wiley-VCH, Weinheim, 2004.
[15]
(c) Uneyama K. Organofluorine Chemistry, Blackwell, Oxford, 2006.
[15]
(d) Bégué J.-P.; Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, 2008.
[15]
Gouverneur V.; Muller K. Fluorine in Pharmaceutical and Medicinal Chemistry : From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
[16]
(a) Burke T.R.; Lee K. Acc. Chem. Res. 2003, 36, 426.
[16]
(b) Muller K.; Faeh C.; Diederich F. Science 2007, 317, 1881.
[16]
(c) Purser S.; Moore P.R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320.
[16]
(d) Berger R.; Resnati G.; Metrangolo P.; Weberd E.; Hulliger J. Chem. Soc. Rev. 2011, 40, 3496.
[16]
(e) Wang J.; Sánchez-Roselló M.; Ace?a J.L.; del Pozo C.; Sorochinsky A.E.; Fustero S.; Soloshonok V.A.; Liu H. Chem. Rev. 2014, 114, 2432.
[16]
(f) Meanwell N.A. J. Med. Chem. 2018, 61, 5822.
[17]
(a) Hansch C.; Leo A.; Unger S.H.; Kim K.H.; Nikaitani D.; Lien E.J. J. Med. Chem. 1973, 16, 1207.
[17]
(b) Hansch C.; Leo A.; Taft R.W. Chem. Rev. 1991, 91, 165.
[17]
(c) Biffinger J.C.; Kim H.W.; DiMagno S.G. ChemBioChem 2004, 5, 622.
[17]
(d) Leroux F.; Jeschke P.; Schlosser M. Chem. Rev. 2005, 105, 827.
[17]
(e) Manteau B.; Pazenok S.; Vors J.-P.; Leroux F.R. J. Fluorine Chem. 2010, 131, 140.
[17]
(f) Landelle G.; Panossian A. Curr. Top. Med. Chem. 2014, 14, 941.
[18]
(a) Boiko V.N. Beilstein J. Org. Chem. 2010, 6, 880.
[18]
(b) Tlili A.; Billard T. Angew. Chem. Int. Ed. 2013, 52, 6818.
[18]
(c) Liang T.; Neumann C.N.; Ritter T. Angew. Chem. Int. Ed. 2013, 52, 8214.
[18]
(d) Toulgoat F.; Alazet S.; Billard T. Eur. J. Org. Chem. 2014, 2415.
[18]
(e) Besset T; Poisson T; Pannecoucke X. Chem. -Eur. J. 2014, 20, 16830.
[18]
(f) Chu L.; Qing F.-L. Acc. Chem. Res. 2014, 47, 1513.
[18]
(g) Zhang K.; Xu X.; Qing F. Chin. J. Org. Chem. 2015, 35, 556. (in Chinese)
[18]
张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.).
[18]
(h) Xu X.H.; Matsuzaki K.; Shibata N. Chem. Rev. 2015, 115, 731.
[18]
(i) Ni C.; Hu M.; Hu J. Chem. Rev. 2015, 115, 765.
[18]
(j) Yang X.; Wu T.; Phipps R.J.; Toste F.D. Chem. Rev. 2015, 115, 826.
[18]
(k) Shao X.; Xu C.; Lu L.; Shen Q. Acc. Chem. Res. 2015, 48, 1227.
[18]
(l) Barata-Vallejo S.; Bonesi S.; Postigo A. Org. Biomol. Chem. 2016, 14, 7150.
[18]
(m) Zhang P.; Lu L.; Shen Q. Acta Chim. Sinica 2017, 75, 744. (in Chinese)
[18]
张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.).
[19]
(a) Guo Y.; Huang M.-W.; Fu X.-L.; Liu C.; Chen Q.-Y.; Zhao Z.-G.; Zeng B.-Z.; Chen J. Chin. Chem. Lett. 2017, 28, 719.
[19]
(b) Li S.; Wang J. Acta Chim. Sinica 2018, 76, 913. (in Chinese)
[19]
李树森, 王剑波, 化学学报, 2018, 76, 913.).
[19]
(c) Hardy M.A.; Chachignon H.; Cahard D. Asian J. Org. Chem. 2019, 8, 591.
[20]
Luo J.; Zhu Z.; Liu Y.; Zhao X. Org. Lett. 2015, 17, 3620.
[21]
Denmark S.E.; Beutner G.L. Angew. Chem., Int. Ed. 2008, 47, 1560.
[22]
Liu X.; An R.; Zhang X.; Luo J.; Zhao X. Angew. Chem., Int. Ed. 2016, 55, 5846.
[23]
Luo J.; Liu Y.; Zhao X. Org. Lett. 2017, 19, 3434.
[24]
(a) Petersen K.S. Tetrahedron Lett. 2015, 56, 6523.
[24]
(b) Zeng X.-P.; Cao Z.-Y.; Wang Y.-H.; Zhou F.; Zhou J. Chem. Rev. 2016, 116, 7330.
[25]
Luo J.; Cao Q.; Cao X.; Zhao X. Nat. Commun. 2018, 9, 527.
[26]
(a) Wipf P. Chem. Rev. 1995, 95, 2115.
[26]
(b) Marson C.M.; Matthews C.J.; Atkinson S.J.; Lamadema N.; Thomas N. S. B.J. Med. Chem. 2015, 58, 6803.
[26]
(c) Tyler A.R.; Mosaei H.; Morton S.; Waddell P.G.; Wills C.; McFarlane W.; Gray J.; Goodfellow M.; Errington J.; Allenby N.; Zenkin N.; Hall M.J. J. Nat. Prod. 2017, 80, 1558.
[26]
(d) Yang G.; Zhang W. Chem. Soc. Rev. 2018, 47, 1783.
[27]
(a) Jaganathan A.; Garzan A.; Whitehead D.C.; Staples R.J.; Borhan B. Angew. Chem. Int. Ed. 2011, 50, 2593.
[27]
(b) Jaganathan A.; Borhan B. Org. Lett. 2014, 16, 3616.
[27]
(c) Marzijarani N.S.; Yousefi R.; Jaganathan A.; Ashtekar K.D.; Jackson J.E.; Borhan B. Chem. Sci. 2018, 9, 2898.
[28]
Rauniyar V.; Lackner A.D.; Hamilton G.L.; Toste F.D. Science 2011, 334, 1681.
[29]
(a) Kawato Y.; Kubota A.; Ono H.; Egami H.; Hamashima Y. Org. Lett. 2015, 17, 1244.
[29]
(b) Kawato Y.; Ono H.; Kubota A.; Nagao Y.; Morita N.; Egami H.; Hamashima Y. Chem. -Eur. J. 2016, 22, 2127.
[29]
(c) Nagao Y.; Hisanaga T.; Egami H.; Kawato Y.; Hamashima Y. Chem. -Eur. J. 2017, 23, 16758.
[30]
Qin T.; Jiang Q.; Ji J.; Luo J.; Zhao X. Org. Biomol. Chem. 2019, 17, 1763.
[31]
Liu X.; Liang Y.; Ji J.; Luo J.; Zhao X. J. Am. Chem. Soc. 2018, 140, 4782.
[32]
Xu J.; Zhang Y.; Qin T.; Zhao X. Org. Lett. 2018, 20, 6384.
[33]
Br?se S.; Gil C.; Knepper K.; Zimmermann V. Angew. Chem., Int. Ed. 2005, 44, 5188.
[34]
Liang Y.; Zhao X. ACS Catal. 2019, 9, 6896.
Outlines

/