Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (2): 443-454.DOI: 10.6023/cjoc202010005 Previous Articles Next Articles
Special Issue: 热点论文虚拟合集
ACCOUNT
收稿日期:
2020-10-05
修回日期:
2020-11-03
发布日期:
2020-12-05
通讯作者:
赵晓丹
作者简介:
姜权彬博士, 2016年在中国科学院大连化学物理研究所获得有机化学博士学位, 导师余正坤研究员. 现在中山大学化学学院博士后流动站从事博士后研究, 合作导师赵晓丹教授. 研究方向为烯烃的亲电转化. |
赵晓丹教授, 2007年底在中国科学院大连化学物理研究所有机化学专业博士毕业, 导师余正坤研究员, 期间作为交换学生在加拿大渥太华大学Howard Alper课题组学习和从事研究工作一年. 2008~2010年在多伦多大学从事博士后研究, 合作导师Vy M. Dong教授. 2010~2013年在美国科罗拉多州立大学Tomislav Rovis课题组从事博士后研究. 2013年入职中山大学化学学院, 开始独立科研工作. 研究方向为有机硫属化合物催化、不对称催化和有机氟化学. |
基金资助:
Quanbin Jiang1, Xiaodan Zhao1,*()
Received:
2020-10-05
Revised:
2020-11-03
Published:
2020-12-05
Contact:
Xiaodan Zhao
Supported by:
Share
Quanbin Jiang, Xiaodan Zhao. Chiral Bifunctional Chalcogenide-Catalyzed Enantioselective Electrophilic Thiofunctionalization of Alkenes[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 443-454.
[1] |
(a) Parry R.J. Tetrahedron 1983, 39, 1215.
doi: 10.1016/S0040-4020(01)91887-3 |
(b) Nudelman A. The Chemistry of Optically Active Sulfur Compounds, Gordon and Breach, New York, 1984.
|
|
(c) Anne C.; Turcaud S.; Quancard J.; Teffo F.; Meudal H.; Fournié-Zaluski M.-C.; Roques B.P. J. Med. Chem. 2003, 46, 4648.
doi: 10.1021/jm0300680 |
|
(d) McGrath N.A.; Brichacek M.; Njardarson J.T. J. Chem. Educ. 2010, 87, 1348.
doi: 10.1021/ed1003806 |
|
(e) Ilardi E.A.; Vitaku E.; Njardarson J.T. J. Med. Chem. 2014, 57, 2832.
doi: 10.1021/jm401375q |
|
(f) Feng M.; Tang B.; Liang S.H.; Jiang X. Curr. Top. Med. Chem. 2016, 16, 1200.
doi: 10.2174/1568026615666150915111741 |
|
(g) Scott K.A.; Njardarson J.T. Top. Curr. Chem. 2018, 376, 5.
|
|
[2] |
(a) Counts G.W.; Gregory D.; Zeleznik D.; Turck M. Antimicrob. Agents Chemother. 1977, 11, 708.
doi: 10.1128/AAC.11.4.708 |
(b) Yagupolskii L.M.; Maletina I.I.; Petko K.I.; Fedyuk D.V.; Handrock R.; Shavaran S.S.; Klebanov B.M.; Herzig S. J. Fluorine Chem. 2001, 109, 87.
doi: 10.1016/S0022-1139(01)00382-7 |
|
(c) Pommier P.; Keïta A.; Wessel-Robert S.; Dellac B.; Mundt H.C. Rev. Med. Vet. 2003, 154, 41.
|
|
[3] |
Chatgilialoglu C.; Asmus K.D. Sulfur - Centered Reactive Intermediates in Chemistry and Biology, Springer Verlag, New York, 1991.
|
(b) Masdeu-Bultó A.M.; Diéguez M.; Martin E.; Gómez M. Coord. Chem. Rev. 2003, 242, 159.
doi: 10.1016/S0010-8545(03)00106-1 |
|
(c) Otocka S; Kwiatkowska M.; Madalińska L.; Kiełbasiński P. Chem. Rev. 2017, 117, 4147.
doi: 10.1021/acs.chemrev.6b00517 |
|
[4] |
(a) Kondo T.; Mitsudo T.-A. Chem. Rev. 2000, 100, 3205.
doi: 10.1021/cr9902749 |
(b) Clayden J.; MacLellan P. Beilstein J. Org. Chem. 2011, 7, 582.
doi: 10.3762/bjoc.7.68 |
|
(c) Chauhan P.; Mahajan S.; Enders D. Chem. Rev. 2014, 114, 8807.
doi: 10.1021/cr500235v |
|
(d) Yu J.-S.; Huang H.-M.; Ding P.-G.; Hu X.-S.; Zhou F.; Zhou J. ACS Catal. 2016, 6, 5319.
doi: 10.1021/acscatal.6b01496 |
|
[5] |
(a) Pritɀius A.B.; Breit B. Angew. Chem. Int. Ed. 2015, 54, 3121.
doi: 10.1002/anie.201411402 |
(b) Kennemur J.L.; Kortman G.D.; Hull K.L. J. Am. Chem. Soc. 2016, 138, 11914.
doi: 10.1021/jacs.6b07142 |
|
(c) Yang X.-H.; Davison R.T.; Dong V.M. J. Am. Chem. Soc. 2018, 140, 10443.
doi: 10.1021/jacs.8b06957 |
|
(d) Yang X.-H.; Davison R.; Nie S.-Z.; Cruz F.A.; McGinnis T.M.; Dong V.M. J. Am. Chem. Soc. 2019, 141, 3006.
doi: 10.1021/jacs.8b11395 |
|
[6] |
(a) Liu Y.; Sun B.; Wang B.; Wakem M.; Deng L. J. Am. Chem. Soc. 2009, 131, 418.
doi: 10.1021/ja8085092 |
(b) Hui Y.; Jiang J.; Wang W.; Chen W.; Cai Y.; Lin L.; Liu X.; Feng X. Angew. Chem. Int. Ed. 2010, 49, 4290.
doi: 10.1002/anie.v49:25 |
|
(c) White J. D.; Shaw, S.Chem. Sci. 2014, 5, 2200.
doi: 10.1039/C4SC00051J |
|
(d) Yang J.; Farley A. J. M.; Dixon D.J. Chem. Sci. 2017, 8, 606.
doi: 10.1039/C6SC02878K |
|
(e) Formica M.; Sorin G.; Farley A. J. M.; Díaz J.; Paton R.S.; Dixon D.J. Chem. Sci. 2018, 9, 6969.
doi: 10.1039/C8SC01804A |
|
[7] |
(a) Zhao G.-L.; Rios R; Vesely J.; Eriksson L.; Córdova A. Angew. Chem. Int. Ed. 2008, 47, 8468.
doi: 10.1002/anie.v47:44 |
(b) Denmark S.E.; Vogler T. Chem.- Eur. J. 2009, 15, 11737.
doi: 10.1002/chem.200901377 |
|
(c) Mizar P.; Niebuhr R.; Hutchings M.; Farooq U.; Wirth T. Chem.- Eur. J. 2016, 22, 1614.
doi: 10.1002/chem.201504636 |
|
[8] |
(a) Marigo M.; Wabnitz T.C.; Fielenbach D.; Jørgensen K.A. Angew. Chem. Int. Ed. 2005, 44, 794.
doi: 10.1002/anie.v44:5 pmid: 16366584 |
(b) Franzén J.; Marigo M.; Fielenbach D.; Wabnitz T.C.; Kjærsgaard A.; Jørgensen K.A. J. Am. Chem. Soc. 2005, 127, 18296.
pmid: 16366584 |
|
(c) Armstrong A.; Challinor L.; Moir J.H. Angew. Chem. Int. Ed. 2007, 46, 5369.
doi: 10.1002/(ISSN)1521-3773 pmid: 16366584 |
|
(d) Fang L.; Lin A.; Hu H.; Zhu C. Chem.- Eur. J. 2009, 15, 7039.
doi: 10.1002/chem.200901099 pmid: 16366584 |
|
(e) Li X.; Liu C.; Xue X.-S.; Cheng J.-P. Org. Lett. 2012, 14, 4374.
doi: 10.1021/ol301833f pmid: 16366584 |
|
(f) Han Z.; Chen W.; Dong S.; Yang C.; Liu H.; Pan Y.; Yan L.; Jiang Z. Org. Lett. 2012, 14, 4670.
doi: 10.1021/ol3021176 pmid: 16366584 |
|
[9] |
(a) Denmark S.E.; Kuester W.E.; Burk M.T. Angew. Chem. Int. Ed. 2012, 51, 10938.
doi: 10.1002/anie.201204347 |
(b) Cheng Y.A.; Yu W.Z.; Yeung Y.-Y. Org. Biomol. Chem. 2014, 12, 2333.
doi: 10.1039/C3OB42335B |
|
(c) Sakakura A.; Ishihara K. Chem. Rec. 2015, 15, 728.
doi: 10.1002/tcr.v15.4 |
|
(d) Cresswell A.J.; Eey S.T.-C.; Denmark S.E. Angew. Chem. Int. Ed. 2015, 54, 15642.
doi: 10.1002/anie.201507152 |
|
(e) Gieuw M.H.; Ke Z.; Yeung Y.-Y. Chem. Rec. 2017, 17, 287.
doi: 10.1002/tcr.v17.3 |
|
(f) Landry M.L.; Burns N.Z. Acc. Chem. Res. 2018, 51, 1260.
doi: 10.1021/acs.accounts.8b00064 |
|
[10] |
(a) Luo J.; Liu X.; Zhao X. Synlett 2017, 28, 397.
doi: 10.1055/s-0036-1588926 |
(b) Matviitsuk A.; Panger J.L.; Denmark S.E. Angew. Chem. Int. Ed. 2020, 59, 19796.
doi: 10.1002/anie.v59.45 |
|
[11] |
(a) Archer N.J.; Rayner C.M.; Bell D.; Miller D. Synlett 1994, 617.
|
(b) Lucchini V.; Modena G.; Pasquato L. J. Chem. Soc. Chem. Commun. 1994, 1565.
|
|
[12] |
(a) Guan H.; Wang H.; Huang D.; Shi Y. Tetrahedron 2012, 68, 2728.
doi: 10.1016/j.tet.2012.01.006 |
(b) Li L.; Li Z.; Huang D.; Wang H.; Shi Y. RSC Adv. 2013, 3, 4523.
doi: 10.1039/c3ra40307f |
|
[13] |
(a) Denmark S.E.; Kornfilt D. J. P.; Vogler T. J. Am. Chem. Soc. 2011, 133, 15308.
doi: 10.1021/ja2064395 pmid: 25411883 |
(b) Denmark S.E.; Jaunet A. J. Am. Chem. Soc. 2013, 135, 6419.
doi: 10.1021/ja401867b pmid: 25411883 |
|
(c) Denmark S.E.; Chi H.M. J. Am. Chem. Soc. 2014, 136, 8915.
doi: 10.1021/ja5046296 pmid: 25411883 |
|
(d) Denmark S.E.; Hartmann E.; Kornfilt D. J. P.; Wang H. Nat. Chem. 2014, 6, 1056.
doi: 10.1038/nchem.2109 pmid: 25411883 |
|
(e) Tao Z.; Robb K.A.; Zhao K.; Denmark S. E.J. Am. Chem. Soc. 2018, 140, 3569.
doi: 10.1021/jacs.8b01660 pmid: 25411883 |
|
(f) Roth A.; Denmark S.E. J. Am. Chem. Soc. 2019, 141, 13767.
doi: 10.1021/jacs.9b07019 pmid: 25411883 |
|
(g) Matviitsuk A.; Denmark S.E. Angew. Chem. Int. Ed. 2019, 58, 12486.
doi: 10.1002/anie.v58.36 pmid: 25411883 |
|
(h) Xie Y.-Y.; Chen Z.-M.; Luo H.-Y.; Shao H.; Tu Y.-Q.; Bao X.; Cao R.-F. Zhang S.-Y.; Tian J.-M. Angew. Chem. Int. Ed. 2019, 58, 12491.
doi: 10.1002/anie.v58.36 pmid: 25411883 |
|
[14] |
Denmark S.E.; Collins W.R.; Cullen M.D. J. Am. Chem. Soc. 2009, 131, 3490.
doi: 10.1021/ja900187y |
[15] |
Hiyama T. Organofluorine Compounds : Chemistry and Applications, Springer, New York, 2000.
|
(b) Kirsch P. Modern Fluoroorganic Chemistry : Synthesis Reactivity, Applications, Wiley-VCH, Weinheim, 2004.
|
|
(c) Uneyama K. Organofluorine Chemistry, Blackwell, Oxford, 2006.
|
|
(d) Bégué J.-P.; Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, 2008.
|
|
Gouverneur V.; Muller K. Fluorine in Pharmaceutical and Medicinal Chemistry : From Biophysical Aspects to Clinical Applications, Imperial College Press, London, 2012.
|
|
[16] |
(a) Burke T.R.; Lee K. Acc. Chem. Res. 2003, 36, 426.
doi: 10.1021/ar020127o |
(b) Muller K.; Faeh C.; Diederich F. Science 2007, 317, 1881.
doi: 10.1126/science.1131943 |
|
(c) Purser S.; Moore P.R.; Swallow S.; Gouverneur V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C |
|
(d) Berger R.; Resnati G.; Metrangolo P.; Weberd E.; Hulliger J. Chem. Soc. Rev. 2011, 40, 3496.
doi: 10.1039/c0cs00221f |
|
(e) Wang J.; Sánchez-Roselló M.; Aceña J.L.; del Pozo C.; Sorochinsky A.E.; Fustero S.; Soloshonok V.A.; Liu H. Chem. Rev. 2014, 114, 2432.
doi: 10.1021/cr4002879 |
|
(f) Meanwell N.A. J. Med. Chem. 2018, 61, 5822.
doi: 10.1021/acs.jmedchem.7b01788 |
|
[17] |
(a) Hansch C.; Leo A.; Unger S.H.; Kim K.H.; Nikaitani D.; Lien E.J. J. Med. Chem. 1973, 16, 1207.
pmid: 24484423 |
(b) Hansch C.; Leo A.; Taft R.W. Chem. Rev. 1991, 91, 165.
doi: 10.1021/cr00002a004 pmid: 24484423 |
|
(c) Biffinger J.C.; Kim H.W.; DiMagno S.G. ChemBioChem 2004, 5, 622.
pmid: 24484423 |
|
(d) Leroux F.; Jeschke P.; Schlosser M. Chem. Rev. 2005, 105, 827.
doi: 10.1021/cr040075b pmid: 24484423 |
|
(e) Manteau B.; Pazenok S.; Vors J.-P.; Leroux F.R. J. Fluorine Chem. 2010, 131, 140.
doi: 10.1016/j.jfluchem.2009.09.009 pmid: 24484423 |
|
(f) Landelle G.; Panossian A. Curr. Top. Med. Chem. 2014, 14, 941.
pmid: 24484423 |
|
[18] |
(a) Boiko V.N. Beilstein J. Org. Chem. 2010, 6, 880.
doi: 10.3762/bjoc.6.88 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
(b) Tlili A.; Billard T. Angew. Chem. Int. Ed. 2013, 52, 6818.
doi: 10.1002/anie.201301438 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(c) Liang T.; Neumann C.N.; Ritter T. Angew. Chem. Int. Ed. 2013, 52, 8214.
doi: 10.1002/anie.v52.32 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(d) Toulgoat F.; Alazet S.; Billard T. Eur. J. Org. Chem. 2014, 2415.
pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(e) Besset T; Poisson T; Pannecoucke X. Chem. -Eur. J. 2014, 20, 16830.
doi: 10.1002/chem.201404537 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(f) Chu L.; Qing F.-L. Acc. Chem. Res. 2014, 47, 1513.
doi: 10.1021/ar4003202 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(g) Zhang K.; Xu X.; Qing F. Chin. J. Org. Chem. 2015, 35, 556. (in Chinese)
doi: 10.6023/cjoc201501017 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.).
doi: 10.6023/cjoc201501017 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(h) Xu X.H.; Matsuzaki K.; Shibata N. Chem. Rev. 2015, 115, 731.
doi: 10.1021/cr500193b pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(i) Ni C.; Hu M.; Hu J. Chem. Rev. 2015, 115, 765.
doi: 10.1021/cr5002386 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(j) Yang X.; Wu T.; Phipps R.J.; Toste F.D. Chem. Rev. 2015, 115, 826.
doi: 10.1021/cr500277b pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(k) Shao X.; Xu C.; Lu L.; Shen Q. Acc. Chem. Res. 2015, 48, 1227.
doi: 10.1021/acs.accounts.5b00047 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(l) Barata-Vallejo S.; Bonesi S.; Postigo A. Org. Biomol. Chem. 2016, 14, 7150.
doi: 10.1039/C6OB00763E pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
(m) Zhang P.; Lu L.; Shen Q. Acta Chim. Sinica 2017, 75, 744. (in Chinese)
doi: 10.6023/A17050202 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.).
doi: 10.6023/A17050202 pmid: C2FFAE2D-3ADD-44F1-8659-75F71F4C092F |
|
[19] |
(a) Guo Y.; Huang M.-W.; Fu X.-L.; Liu C.; Chen Q.-Y.; Zhao Z.-G.; Zeng B.-Z.; Chen J. Chin. Chem. Lett. 2017, 28, 719.
doi: 10.1016/j.cclet.2017.02.006 pmid: 44FA39C6-539D-4118-B69E-83C3722933D0 |
(b) Li S.; Wang J. Acta Chim. Sinica 2018, 76, 913. (in Chinese)
doi: 10.6023/A18070306 pmid: 44FA39C6-539D-4118-B69E-83C3722933D0 |
|
李树森, 王剑波, 化学学报, 2018, 76, 913.).
doi: 10.6023/A18070306 pmid: 44FA39C6-539D-4118-B69E-83C3722933D0 |
|
(c) Hardy M.A.; Chachignon H.; Cahard D. Asian J. Org. Chem. 2019, 8, 591.
doi: 10.1002/ajoc.v8.5 pmid: 44FA39C6-539D-4118-B69E-83C3722933D0 |
|
[20] |
Luo J.; Zhu Z.; Liu Y.; Zhao X. Org. Lett. 2015, 17, 3620.
doi: 10.1021/acs.orglett.5b01727 |
[21] |
Denmark S.E.; Beutner G.L. Angew. Chem., Int. Ed. 2008, 47, 1560.
doi: 10.1002/(ISSN)1521-3773 |
[22] |
Liu X.; An R.; Zhang X.; Luo J.; Zhao X. Angew. Chem., Int. Ed. 2016, 55, 5846.
doi: 10.1002/anie.201601713 |
[23] |
Luo J.; Liu Y.; Zhao X. Org. Lett. 2017, 19, 3434.
doi: 10.1021/acs.orglett.7b01392 |
[24] |
(a) Petersen K.S. Tetrahedron Lett. 2015, 56, 6523.
doi: 10.1016/j.tetlet.2015.09.134 |
(b) Zeng X.-P.; Cao Z.-Y.; Wang Y.-H.; Zhou F.; Zhou J. Chem. Rev. 2016, 116, 7330.
doi: 10.1021/acs.chemrev.6b00094 |
|
[25] |
Luo J.; Cao Q.; Cao X.; Zhao X. Nat. Commun. 2018, 9, 527.
doi: 10.1038/s41467-018-02955-0 |
[26] |
(a) Wipf P. Chem. Rev. 1995, 95, 2115.
doi: 10.1021/cr00038a013 |
(b) Marson C.M.; Matthews C.J.; Atkinson S.J.; Lamadema N.; Thomas N. S. B.J. Med. Chem. 2015, 58, 6803.
doi: 10.1021/acs.jmedchem.5b00545 |
|
(c) Tyler A.R.; Mosaei H.; Morton S.; Waddell P.G.; Wills C.; McFarlane W.; Gray J.; Goodfellow M.; Errington J.; Allenby N.; Zenkin N.; Hall M.J. J. Nat. Prod. 2017, 80, 1558.
doi: 10.1021/acs.jnatprod.7b00082 |
|
(d) Yang G.; Zhang W. Chem. Soc. Rev. 2018, 47, 1783.
doi: 10.1039/C7CS00615B |
|
[27] |
(a) Jaganathan A.; Garzan A.; Whitehead D.C.; Staples R.J.; Borhan B. Angew. Chem. Int. Ed. 2011, 50, 2593.
doi: 10.1002/anie.201006910 pmid: 29719676 |
(b) Jaganathan A.; Borhan B. Org. Lett. 2014, 16, 3616.
doi: 10.1021/ol500861z pmid: 29719676 |
|
(c) Marzijarani N.S.; Yousefi R.; Jaganathan A.; Ashtekar K.D.; Jackson J.E.; Borhan B. Chem. Sci. 2018, 9, 2898.
doi: 10.1039/c7sc04430e pmid: 29719676 |
|
[28] |
Rauniyar V.; Lackner A.D.; Hamilton G.L.; Toste F.D. Science 2011, 334, 1681.
doi: 10.1126/science.1213918 |
[29] |
(a) Kawato Y.; Kubota A.; Ono H.; Egami H.; Hamashima Y. Org. Lett. 2015, 17, 1244.
doi: 10.1021/acs.orglett.5b00220 |
(b) Kawato Y.; Ono H.; Kubota A.; Nagao Y.; Morita N.; Egami H.; Hamashima Y. Chem. -Eur. J. 2016, 22, 2127.
doi: 10.1002/chem.201503153 |
|
(c) Nagao Y.; Hisanaga T.; Egami H.; Kawato Y.; Hamashima Y. Chem. -Eur. J. 2017, 23, 16758.
doi: 10.1002/chem.201704847 |
|
[30] |
Qin T.; Jiang Q.; Ji J.; Luo J.; Zhao X. Org. Biomol. Chem. 2019, 17, 1763.
doi: 10.1039/C8OB02575D |
[31] |
Liu X.; Liang Y.; Ji J.; Luo J.; Zhao X. J. Am. Chem. Soc. 2018, 140, 4782.
doi: 10.1021/jacs.8b01513 |
[32] |
Xu J.; Zhang Y.; Qin T.; Zhao X. Org. Lett. 2018, 20, 6384.
doi: 10.1021/acs.orglett.8b02672 |
[33] |
Bräse S.; Gil C.; Knepper K.; Zimmermann V. Angew. Chem., Int. Ed. 2005, 44, 5188.
doi: 10.1002/(ISSN)1521-3773 |
[34] |
Liang Y.; Zhao X. ACS Catal. 2019, 9, 6896.
doi: 10.1021/acscatal.9b01900 |
[1] | Shuang Yang, Xinqiang Fang. Kinetic Resolutions Enabled by N-Heterocyclic Carbene Catalysis: An Update [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 448-480. |
[2] | Wanting Chen, Xiongwei Zhong, Jiale Xing, Changshu Wu, Yang Gao. Progress in Asymmetric Catalytic Synthesis of C—N Axis Chiral Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 349-377. |
[3] | Quanbin Jiang. Progress in Synthesis of Axially Chiral Compounds through aza-Vinylidene o-Quinone Methide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 159-172. |
[4] | Chun-Xia Cheng, Lu-Ping Wu, Feng Sha, Xin-Yan Wu. Enantioselective Vinylogous Allylic Alkylation of Coumarins with Morita-Baylis-Hillman Carbonates Catalyzed by Chiral Phosphine-Amide [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3188-3195. |
[5] | Yiwen Quan, Xinhui Jiang, Wenjun Li, Jian Wang. Access to α-Vinyl β-Alkynyl Enals via an Organocatalytic Deconjugation-Aldol Condensation Sequence [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2120-2125. |
[6] | Cheng Luo, Yanli Yin, Zhiyong Jiang. Recent Advances in Asymmetric Synthesis of P-Chiral Phosphine Oxides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1963-1976. |
[7] | Ke Jing, Panke Zhang, Senmiao Xu. Application of 1,4-Azaborines in Organic and Transition Metal Catalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1742-1750. |
[8] | Xinyu Zhang, Huihui Geng, Shilei Zhang, Wei Wang, Xiaobei Chen. A Method for the Synthesis of Deuterated Benzoins Catalyzed by N-Heterocyclic Carbene [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1510-1516. |
[9] | Siqiang Fang, Zanjiao Liu, Tianli Wang. Recent Advances of the Atherton-Todd Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1069-1083. |
[10] | Haiqing Wang, Shuang Yang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxybenzyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 974-999. |
[11] | Weidi Cao, Xiaohua Liu. Recent Advances on Catalytic Enantioselective Protonation for Construction of α-Tertiary Carbonyl Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 961-973. |
[12] | Ling Meng, Jun Wang. Research Progress on Synthesis of Thioflavonoids [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 873-891. |
[13] | Chunbo Dai, Siqi Xia, Xiaoyu Chen, Limin Yang. N-Heterocyclic Carbene (NHC)-Catalyzed [4+3] Cycloaddition to Synthesize 4-Aminobenzoheptenolactons [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1084-1090. |
[14] | Yushan Zhang, Zhen Huan, Jindong Yang, Jinpei Cheng. Recent Advances in Hydrogen Transfer Reactivities of N-Heterocyclic Phosphines [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3806-3825. |
[15] | Jiayi Zhao, Yicong Ge, Chuan He. Construction of Silicon-Stereogenic Center via Catalytic Asymmetric Si—H/X—H Dehydrogenative Coupling [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3352-3366. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||