Original article

Transamidation of N-Benzyl-N-Boc-amides under Transition Metal-Free and Base-Free Conditions

  • Danfeng Ye ,
  • Hao Chen ,
  • Zhiyuan Liu ,
  • Chuanhu Lei
Expand
  • a School of Materials Science and Engineering, Shanghai University, Shanghai 200444
    b Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444
* Corresponding author. E-mail:

Received date: 2020-09-22

  Revised date: 2020-10-23

  Online published: 2020-12-10

Supported by

National Natural Science Foundation of China(21901155); Shanghai University Startup Funding(20QA1403700); Eastern Scholars Program from the Shanghai Municipal Education Committee(N.13-G210-20-263)

Abstract

A new protocol for the transamidation of N-benzyl-N-Boc-amides under transition metal-free and base-free conditions is described. The reaction features high reactivity of N-Boc-imides via direct acyl nucleophilic substitution mechanism, and provides access to a diverse array of substituted amides in good to excellent yields. Notably, the base-free condition preserves enantiopurity with respect to chiral amino-acid-derived nucleophiles, and N-Boc-amides bearing an epimerizable stereocenter. The application of this method is also demonstrated through the synthesis of pro-drugs and antidepressant moclobemide.

Cite this article

Danfeng Ye , Hao Chen , Zhiyuan Liu , Chuanhu Lei . Transamidation of N-Benzyl-N-Boc-amides under Transition Metal-Free and Base-Free Conditions[J]. Chinese Journal of Organic Chemistry, 2021 , 41(4) : 1658 -1669 . DOI: 10.6023/cjoc202009048

References

[1]
(a) Greenberg, A.R.; Breneman, C.M.; Liebman, J.F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, Wiley-VCH, New York, 2003.
[1]
(b) Hua, X.; Liu, N.; Fan, Z.; Zong, G.; Ma, Y.; Lei, K.; Yin, H.; Wang, G. Chin. J. Org. Chem. 2019, 39,2581. (in Chinese)
[1]
( 华学文, 刘南南, 范志金, 宗广宁, 马翼, 雷康, 殷昊, 王桂清, 有机化学, 2019, 39,2581.)
[1]
(c) Zhong, L.; Jiang, T.; Zhang, F.; Fu, Q.; Liu, X.; Xu, T.; Ding, C.; Chen, J.; Yuan, J.; Tan, C. Chin. J. Org. Chem. 2019, 39,2655. (in Chinese)
[1]
( 钟良坤, 江涛, 张帆, 付庆, 刘幸海, 许天明, 丁成荣, 陈杰, 袁静, 谭成侠, 有机化学, 2019, 39,2655.)
[2]
For reviews, see: (a) Allen, C. L; Williams, J. M. J. Chem. Soc. Rev. 2011, 40,3405.
[2]
(b) Pattabiraman, V.R.; Bode, J.W. Nature 2011, 480,471.
[2]
(c) Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev. 2014, 43,2714.
[2]
(d) Wan, J.-P.; Jing, Y. Beilstein J. Org. Chem. 2015, 11,2209.
[2]
(e) de Figueiredo, R.M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116,12029.
[2]
(f) Ojeda-Porras, A.; Gamba-Sánchez, D. J. Org. Chem. 2016, 81,11548.
[2]
For recent examples on the synthesis of amide, see: (g) Wang, Z.; Yang, L.; Liu, H.; Bao, W.; Tan, Y.; Wang, M.; Tang, Z.; He, W. Chin. J. Org. Chem. 2018, 38,2639. (in Chinese)
[2]
( 王峥, 杨柳, 刘慧兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38,2639.)
[2]
(h) Xie, L.Y.; Peng, S.; Liu, F.; Yi, J.Y.; Wang, M.; Tang, Z.L.; Xu, X.H.; He, W.M. Adv. Synth. Catal. 2018, 360,4259.
[2]
(i) Dissanayake, D. M., M.M.; Melville, A.D.; Vannucci, A.K. Green Chem. 2019, 21,3165.
[2]
(j) Tu, Z.; Du, Y.; Cao, X.; Liu, Y. Adv. Synth. Catal. 2019, 361,4989.
[2]
(k) Xie, L.-Y.; Hu, J.-L.; Song, Y.-X.; Jia, G.-K.; Lin, Y.-W.; He, J.-Y.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7,19993.
[2]
(l) Yue, H.; Bao, P.; Wang, L.; Lü, X.; Yang, D.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39,463. (in Chinese)
[2]
( 岳会兰, 鲍鹏丽, 王雷雷, 吕晓霞, 杨道山, 王桦, 魏伟, 有机化学, 2019, 39,463.)
[2]
(m) Sheng, R.; Li, P.; Zhou, Z.; Hu, G.; Zhang, X. Chin. J. Org. Chem. 2020, 40,462. (in Chinese)
[2]
( 圣戎, 李萍, 周志强, 胡贵文, 张小祥, 有机化学, 2020, 40,462.)
[3]
(a) Lanigan, R.M.; Sheppard, T.D. Eur. J. Org. Chem. 2013,7453.
[3]
(b) Zheng, J.-F.; Jin, L.-R.; Huang, P.-Q. Org. Lett. 2004, 6,1139.
[3]
(c) Tyrrell, E.; Brawn, P.; Carew, M.; Greenwood, I. Tetrahedron Lett. 2011, 52,369.
[3]
(d) Allen, C.L.; Atkinson, B.N.; Williams, J.M. J. Angew. Chem. Int. Ed. 2012, 51,1383.
[3]
(e) Rao, S.N.; Mohan, D.C.; Adimurthy, S. Org. Lett. 2013, 15,1496.
[4]
(a) Eldred, S.E.; Stone, D.A.; Gellman, S.H.; Stahl, S.S. J. Am. Chem. Soc. 2003, 125,3422.
[4]
(b) Hoerter, J.M.; Otte, K.M.; Gellman, S.H.; Cui, Q.; Stahl, S.S. J. Am. Chem. Soc. 2008, 130,647.
[5]
Bon, E.; Bigg, D.C. H.; Bertrand, G. J. Org. Chem. 1994, 59,4035.
[6]
(a) Gotor, V.; Brieva, R.; González, C.; Rebolledo, F. Tetrahedron 1991, 47,9207.
[6]
(b) Sergeeva, M.V.; Mozhaev, V.V.; Rich, J.O.; Khmelnitsky, Y.L. Biotechnol. Lett. 2000, 22,1419.
[7]
(a) Hie, L.; Fine Nathel, N.F.; Shah, T.K.; Baker, E.L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K.N.; Garg, N.K. Nature 2015, 524,79.
[7]
(b) Weires, N.A.; Baker, E.L.; Garg, N.K. Nat. Chem. 2016, 8,75.
[8]
(a) Baker, E.L.; Yamano, M.M.; Zhou, Y.; Anthony, S.M.; Garg, N.K. Nat. Commun. 2016, 7,11554.
[8]
(b) Dander, J.E.; Baker, E.L.; Garg, N.K. Chem. Sci. 2017, 8,6433.
[9]
(a) Meng, G.; Lei, P.; Szostak, M. Org. Lett. 2017, 19,2158.
[9]
(b) Shi, S.; Szostak, M. Chem. Commun. 2017, 53,10584.
[10]
Li, G.; Szostak, M. Chem. Rec. 2020, 20,649.
[11]
(a) Liu, Y.; Shi, S.; Achtenhagen, M.; Liu, R.; Szostak, M. Org. Lett. 2017, 19,1614.
[11]
(b) Li, G.; Szostak, M. Nat. Commun. 2018, 9,4165.
[11]
(c) Liu, Y.; Achtenhagen, M.; Liu, R.; Szostak, M. Org. Biomol. Chem. 2018, 16,1322.
[11]
(d) Li, G.; Ji, C.-L.; Hong, X.; Szostak, M. J. Am. Chem. Soc. 2019, 141,11161.
[12]
Guo, W.; Huang, J.; Wu, H.; Liu, T.; Luo, Z.; Jian, J.; Zeng, Z. Org. Chem. Front. 2018, 5,2950.
[13]
Verho, O.; Pourghasemi Lati, M.; Oschmann, M. J. Org. Chem. 2018, 83,4464.
[14]
Rahman, M.M.; Li, G.; Szostak, M. J. Org. Chem. 2019, 84,12091.
[15]
Ramkumar, R.; Chandrasekaran, S. Synthesis 2018, 51,921.
[16]
Other recent methods referring to the transamidation of amides (a) Cheung, C.W.; Ploeger, M. L.; Hu, X.; ACS Catal. 2017, 7,7092.
[16]
(b) Cheung, C.W.; Ma, J.-A.; Hu, X. J. Am. Chem. Soc. 2018, 140,6789.
[16]
(c) Mishra, A.; Singh, S.; Srivastava, V. Asian J. Org. Chem. 2018, 7,1600.
[16]
(d) Ghosh, T.; Jana, S.; Dash, J. Org. Lett. 2019, 21,6690.
[16]
(e) Sureshbabu, P.; Azeez, S.; Chaudhary, P.; Kandasamy, J. Org. Biomol. Chem. 2019, 17,845.
[16]
(f) Chen, J.; Xia, Y.; Lee, S. Org. Lett. 2020, 22,3504.
[17]
Ye, D.; Liu, Z.; Chen, H.; Sessler, J.L.; Lei, C. Org. Lett. 2019, 21,6888.
[18]
(a) Galli, C. Org. Prep. Proced. Int. 1992, 24,285.
[18]
(b) Salvatore, R.N.; Nagle, A.S.; Jung, K.W. J. Org. Chem. 2002, 67,674.
[19]
(a) Meng, G.; Szostak, M. Angew. Chem., nt. Ed. 2015, 54,14518.
[19]
(b) Meng, G.; Szostak, M. Org. Lett. 2015, 17,4364.
[19]
(c) Shi, S.; Meng, G.; Szostak, M. Angew. Chem., nt. Ed. 2016, 55,6959.
[19]
(d) Shi, S.; Szostak, M. Chem.-Eur. J. 2016, 22,10420.
[20]
Graton, J.; Berthelot, M.; Laurence, C. J. Chem. Soc., erkin Trans. 2 2001,2130.
[21]
The pKa of protonated N-methyl-4-methoxybenzylamine was 9.97 from website: http://ibond.nankai.edu.cn/pka/.
[22]
Bonnet, U. CNS Drug Rev. 2002, 8,283.
[23]
Dworkin, R.H.; Kirkpatrick, P. Nat. Rev. Drug Discovery 2005, 4,455.
[24]
Sheraz, M.A.; Ahsan, S.F.; Khan, M.F.; Ahmed, S.; Ahmad, I. J. Pharm. 2016, 2016,8961621.
[25]
Bryans, J.S.; Williams, S.C.; Blakemore, D.C. EP 1178034, 2001.
[26]
(a) Yamada, S.; Hongo, C.; Yoshioka, R.; Chibata, I. J. Org. Chem. 1983, 48,843.
[26]
(b) Harry, L.G.; Pugnière, M.; Castro, B.; Previero, A. Int. J. Peptide Prorein Res. 1993, 41,323.
[26]
(c) Ramachandran, U.; Kumar, S.; Chawla, H.P. S. Org. Prep. Proced. Int. 2003, 35,616.
[26]
(d) Wang, S.M.; Zhao, C.; Zhang, X.; Qin, H.L. Org. Biomol. Chem. 2019, 17,4087.
[27]
(a) Cheung, C.W.; Ploeger, M.L.; Hu, X. Nat. Commun. 2017, 8,14878.
[27]
(b) Halima, T.B.; Masson-Makdissi, J.; Newman, S.G. Angew. Chem. Int. Ed. 2018, 57,12925.
[28]
(a) D, H.A.; Hang, Y. EP 20050713917, 2005.
[28]
(b) Abergel, R.J.; Raymond, K.N. Inorg. Chem. 2006, 45,3622.
[29]
Kanzian, T.; Nigst, T.A.; Maier, A.; Pichl, S.; Mayr, H. Eur. J. Org. Chem. 2009,6379.
[30]
Fox, J.M.; Dmitrenko, O.; Liao, L.-a.; Bach, R.D. J. Org. Chem. 2004, 69,7317.
[31]
Adachi, S.; Kumagai, N.; Shibasaki, M. Tetrahedron Lett. 2018, 59,1147.
[32]
Kumar, V.; Connon, S.J. Chem. Commun. 2017, 53,10212.
[33]
Wang, X.-F.; Yu, S.-S.; Wang, C.; Xue, D.; Xiao, J. Org. Biomol. Chem. 2016, 14,7028.
[34]
Chardon, A.; Mohy El Dine, T.; Legay, R.; De Paolis, M.; Rouden, J.; Blanchet, J. Chem.-Eur. J. 2017, 23,2005.
[35]
Ning, X.-Q.; Lou, S.-J.; Mao, Y.-J.; Xu, Z.-Y.; Xu, D.-Q. Org. Lett. 2018, 20,2445.
[36]
Zhang, B.; Feng, P.; Cui, Y.; Jiao, N. Chem. Commun. 2012, 48,7280.
[37]
Chaudhari, M.B.; Bisht, G.S.; Kumari, P.; Gnanaprakasam, B. Org. Biomol. Chem. 2016, 14,9215.
[38]
Mondal, A.; Subaramanian, M.; Nandakumar, A.; Balaraman, E. Org. Lett. 2018, 20,3381.
[39]
Qian, C.; Zhang, X.; Zhang, Y.; Shen, Q. J. Organomet. Chem. 2010, 695,747.
[40]
Zhu, M.; Fujita, K.-i.; Yamaguchi, R. J. Org. Chem. 2012, 77,9102.
[41]
Sawant, D.N.; Bagal, D.B.; Ogawa, S.; Selvam, K.; Saito, S. Org. Lett. 2018, 20,4397.
[42]
Zhu, J.; Zhang, Y.; Shi, F.; Deng, Y. Tetrahedron Lett. 2012, 53,3178.
[43]
Soulard, V.; Villa, G.; Vollmar, D.P.; Renaud, P. J. Am. Chem. Soc. 2018, 140,155.
[44]
Zhao, Q.; Li, H.; Wang, L. Org. Biomol. Chem. 2013, 11,6772.
[45]
Hamada, S.; Sugimoto, K.; Iida, M.; Furuta, T. Tetrahedron Lett. 2019, 60,151277.
[46]
Rossi, S.A.; Shimkin, K.W.; Xu, Q.; Mori-Quiroz, L.M.; Watson, D.A. Org. Lett. 2013, 15,2314.
[47]
Yuan, Y.-C.; Kamaraj, R.; Bruneau, C.; Labasque, T.; Roisnel, T.; Gramage-Doria, R. Org. Lett. 2017, 19,6404.
[48]
Chernykh, A.V.; Melnykov, K.P.; Tolmacheva, N.A.; Kondratov, I.S.; Radchenko, D.S.; Daniliuc, C.G.; Volochnyuk, D.M.; Ryabukhin, S.V.; Kuchkovska, Y.O.; Grygorenko, O.O. J. Org. Chem. 2019, 84,8487.
[49]
Tran, B.L.; Li, B.; Driess, M.; Hartwig, J.F. J. Am. Chem. Soc. 2014, 136,2555.
[50]
Wang, Y.; Hu, X.; Morales-Rivera, C.A.; Li, G.-X.; Huang, X.; He, G.; Liu, P.; Chen, G. J. Am. Chem. Soc. 2018, 140,9678.
Outlines

/