REVIEWS

Recent Progress in Nucleophilic Fluoride Mediated Fluorine-18 Labeling of Arenes and Heteroarenes

  • Yuan Zhu ,
  • Leyuan Chen ,
  • Wenbin Hou ,
  • Yiliang Li
Expand
  • 1 Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192
* Corresponding authors. E-mail: ;

Received date: 2020-10-21

  Revised date: 2020-12-29

  Online published: 2021-02-07

Supported by

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2016-I2M-3-022); Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2017-I2M-3-019); Fundamental Research Funds for the Central Universities(3332018117); Science and Technology Project of Tianjin of China(18ZXXYSY00110)

Abstract

Fluorine-18 is the most frequently used radioisotope in positron emission tomography radiopharmaceuticals for both clinical and preclinical researches. A variety of labeling methodologies have also been developed in recent years. For most purposes, nucleophilic 18F-fluoride is preferentially used for 18F-labeling because this reagent is easy to handle and made available with high specific activity. Meanwhile, fluorine substitution has also served the purpose of modulating conformational and stereoelectronic properties, and favorably influences pharmacokinetic parameters such as polarity, lipophilicity and pKa values. Arenes and heteroarenes are privileged candidates for 18F-incorporation as they are metabolically robust and therefore widely used for 18F-labeling. Nucleophilic fluoride mediated fluorine-18 labeling reaction has emerged as a promising green and efficient synthetic tool and provides a novel approach for 18F-labeling. The recent developments in nucleophilic fluoride mediated fluorine-18 labeling of arenes and heteroarenes are summarized on the basis of different labeling precursor, including phenols, aryl iodoniums, aryl sulfoniums, aromatic metallic compounds and C(sp2)—H bond. The scope of labeling substrate, some application for radiopharmaceuticals and mechanism of several reactions are also discussed.

Cite this article

Yuan Zhu , Leyuan Chen , Wenbin Hou , Yiliang Li . Recent Progress in Nucleophilic Fluoride Mediated Fluorine-18 Labeling of Arenes and Heteroarenes[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1774 -1788 . DOI: 10.6023/cjoc202010030

References

[1]
Piel, M.; Vernaleken, I.; Rosch, F. J. Med. Chem. 2014, 57(22),9232.
[2]
Matthews, P. M.; Rabiner, E. A.; Passchier, J.; Gunn, R. N. Br. J. Clin. Pharmacol. 2012, 73(2),175.
[3]
Xiong, K. L.; Yang, Q. W.; Gong, S. G.; Zhang, W. G. Nucl. Med. Commun. 2010, 31(1),4.
[4]
Dobrucki, L. W.; Sinusas, A. J. Nat. Rev. Cardiol 2010, 7(1),38.
[5]
Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108(5),1501.
[6]
Fernandez, I.; Frenking, G.; Uggerud, E. J. Org. Chem. 2010, 75(9),2971.
[7]
Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534(7607),369.
[8]
Beyzavi, M. H.; Mandal, D.; Strebl, M. G.; Neumann, C. N.; D'Amato, E. M.; Chen, J.; Hooker, J. M.; Ritter, T. ACS Cent. Sci. 2017, 3(9),944.
[9]
Gao, Z.; Lim, Y. H.; Tredwell, M.; Li, L.; Verhoog, S.; Hopkinson, M.; Kaluza, W.; Collier, T. L.; Passchier, J.; Huiban, M.; Gouverneur, V. Angew. Chem. Int. Ed. 2012, 51(27),6733.
[10]
Mu, L.; Fischer, C. R.; Holland, J. P.; Becaud, J.; Schubiger, P. A.; Schibli, R.; Ametamey, S. M.; Graham, K.; Stellfeld, T.; Dinkelborg, L. M.; Lehmann, L. Eur. J. Org. Chem. 2012,889.
[11]
Sander, K.; Gendron, T.; Yiannaki, E.; Cybulska, K.; Kalber, T. L.; Lythgoe, M. F.; Arstad, E. Sci. Rep. 2015, 5, 9941.
[12]
Chun, J. H.; Morse, C. L.; Chin, F. T.; Pike, V. W. Chem. Commun. 2013, 49(21),2151.
[13]
Pike, V. W.; Aigbirhio, F. I. J. Chem. Soc., hem. Commun. 1995.
[14]
Ross, T. L.; Ermert, J.; Hocke, C.; Coenen, H. H. J. Am. Chem. Soc. 2007, 129(25),8018.
[15]
Chun, J. H.; Lu, S.; Lee, Y. S.; Pike, V. W. J. Org. Chem. 2010, 75(10),3332.
[16]
Yuan, Z.; Cheng, R.; Chen, P.; Liu, G.; Liang, S. H. Angew Chem. Int. Ed. 2016, 55, 11882.
[17]
Ichiishi, N.; Brooks, A. F.; Topczewski, J. J.; Rodnick, M. E.; Sanford, M. S.; Scott, P. J. Org. Lett. 2014, 16(12),3224.
[18]
McCammant, M. S.; Thompson, S.; Brooks, A. F.; Krska, S. W.; Scott, P. J. H.; Sanford, M. S. Org. Lett. 2017, 19(14),3939.
[19]
Cardinale, J.; Ermert, J.; Humpert, S.; Coenen, H. H. RSC Adv. 2014, 4(33),17293.
[20]
Rotstein, B. H.; Stephenson, N. A.; Vasdev, N.; Liang, S. H. Nat. Commun. 2014, 5, 4365.
[21]
Rotstein, B. H.; Wang, L.; Liu, R. Y.; Patteson, J.; Kwan, E. E.; Vasdev, N.; Liang, S. H. Chem. Sci. 2016, 7(7),4407.
[22]
Jakobsson, J. E.; Gronnevik, G.; Riss, P. J. Chem. Commun. 2017, 53(96),12906.
[23]
Haskali, M. B.; Telu, S.; Lee, Y. S.; Morse, C. L.; Lu, S.; Pike, V. W. J. Org. Chem. 2016, 81(1),297.
[24]
Ye, Y.; Schimler, S. D.; Hanley, P. S.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135(44),16292.
[25]
Tredwell, M.; Preshlock, S. M.; Taylor, N. J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Genicot, C.; Gouverneur, V. Angew Chem. Int. Ed. 2014, 53(30),7751.
[26]
Zhang, Z.; Zhang, C.; Lau, J.; Colpo, N.; Benard, F.; Lin, K. S. J. Labelled Comp. Radiopharm. 2016, 59(11),467.
[27]
Zhang, Z.; Lau, J.; Zhang, C.; Colpo, N.; Nocentini, A.; Supuran, C. T.; Benard, F.; Lin, K. S. J. Enzyme Inhib. Med. Chem. 2017, 32(1),722.
[28]
Blevins, D. W.; Kabalka, G. W.; Osborne, D. R.; Akula, M. R. Nat. Sci. 2018, 10(3),125.
[29]
Elie, J.; Vercouillie, J.; Arlicot, N.; Lemaire, L.; Bidault, R.; Bodard, S.; Hosselet, C.; Deloye, J. B.; Chalon, S.; Emond, P.; Guilloteau, D.; Buron, F.; Routier, S. J. Enzyme Inhib. Med. Chem. 2019, 34(1),1.
[30]
Guibbal, F.; Meneyrol, V.; Ait-Arsa, I.; Diotel, N.; Patche, J.; Veeren, B.; Benard, S.; Gimie, F.; Yong-Sang, J.; Khantalin, I.; Veerapen, R.; Jestin, E.; Meilhac, O. ACS Med. Chem. Lett. 2019, 10(5),743.
[31]
Mossine, A. V.; Tanzey, S. S.; Brooks, A. F.; Makaravage, K. J.; Ichiishi, N.; Miller, J. M.; Henderson, B. D.; Skaddan, M. B.; Sanford, M. S.; Scott, P. J. H. Org. Biomol. Chem. 2019, 17(38),8701.
[32]
Basuli, F.; Zhang, X.; Blackman, B.; White, M. E.; Jagoda, E. M.; Choyke, P. L.; Swenson, R. E. Molecules 2019, 24, 2389.
[33]
Clemente, G. S.; Zarganes-Tzitzikas, T.; D?mling, A. H.; Elsinga, P. Molecules 2019, 24, 4210.
[34]
Lahdenpohja, S. O.; Rajala, N. A.; Rajander, J.; Kirjavainen, A. K. EJNMMI Radiopharm. Chem. 2019, 4, 28.
[35]
Yuan, G.; Shoup, T. M.; Moon, S.-H.; Brownell, A.-L. RSC Adv. 2020, 10(42),25223.
[36]
Zhang, B.; Fraser, B. H.; Klenner, M. A.; Chen, Z.; Liang, S. H.; Massi, M.; Robinson, A. J.; Pascali, G. Chemistry 2019, 25(32),7613.
[37]
Preshlock, S.; Calderwood, S.; Verhoog, S.; Tredwell, M.; Huiban, M.; Hienzsch, A.; Gruber, S.; Wilson, T. C.; Taylor, N. J.; Cailly, T.; Schedler, M.; Collier, T. L.; Passchier, J.; Smits, R.; Mollitor, J.; Hoepping, A.; Mueller, M.; Genicot, C.; Mercier, J.; Gouverneur, V. Chem. Commun. 2016, 52(54),8361.
[38]
Taylor, N. J.; Emer, E.; Preshlock, S.; Schedler, M.; Tredwell, M.; Verhoog, S.; Mercier, J.; Genicot, C.; Gouverneur, V. J. Am. Chem. Soc. 2017, 139(24),8267.
[39]
Mossine, A. V.; Brooks, A. F.; Makaravage, K. J.; Miller, J. M.; Ichiishi, N.; Sanford, M. S.; Scott, P. J. Org. Lett. 2015, 17(23),5780.
[40]
Zischler, J.; Kolks, N.; Modemann, D.; Neumaier, B.; Zlatopolskiy, B. D. Chemistry 2017, 23(14),3251.
[41]
Zhang, X.; Basuli, F.; Swenson, R. E. J. Labelled Comp. Radiopharm. 2019, 62(3),139.
[42]
Wilson, T. C.; Xavier, M. A.; Knight, J.; Verhoog, S.; Torres, J. B.; Mosley, M.; Hopkins, S. L.; Wallington, S.; Allen, P. D.; Kersemans, V.; Hueting, R.; Smart, S.; Gouverneur, V.; Cornelissen, B. J. Nucl. Med. 2019, 60(4),504.
[43]
Guibbal, F.; Isenegger, P. G.; Wilson, T. C.; Pacelli, A.; Mahaut, D.; Sap, J. B. I.; Taylor, N. J.; Verhoog, S.; Preshlock, S.; Hueting, R.; Cornelissen, B.; Gouverneur, V. Nat. Protoc. 2020, 15(4),1525.
[44]
Narayanam, M. K.; Ma, G.; Champagne, P. A.; Houk, K. N.; Murphy, J. M. Angew. Chem. Int. Ed. 2017, 56(42),13006.
[45]
Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334(6056),639.
[46]
Kamlet, A. S.; Neumann, C. N.; Lee, E.; Carlin, S. M.; Moseley, C. K.; Stephenson, N.; Hooker, J. M.; Ritter, T. PLoS One 2013, 8(3),e59187.
[47]
Brandt, J. R.; Lee, E.; Boursalian, G. B.; Ritter, T. Chem. Sci. 2014, 5(1)
[48]
Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134(42),17456.
[49]
Ren, H.; Wey, H. Y.; Strebl, M.; Neelamegam, R.; Ritter, T.; Hooker, J. M. ACS Chem. Neurosci. 2014, 5(7),611.
[50]
Gamache, R. F.; Waldmann, C.; Murphy, J. M. Org. Lett. 2016, 18(18),4522.
[51]
Makaravage, K. J.; Brooks, A. F.; Mossine, A. V.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2016, 18(20),5440.
[52]
Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135(25),9342.
[53]
Lee, S. J.; Makaravage, K. J.; Brooks, A. F.; Scott, P. J. H.; Sanford, M. S. Angew. Chem. Int. Ed. 2019, 58(10),3119.
[54]
Chen, W.; Huang, Z.; Tay, N. E. S.; Giglio, B.; Wang, M.; Wang, H.; Wu, Z.; Nicewicz, D. A.; Li, Z. Science 2019, 364(6446),1170.
Outlines

/