ARTICLES

Efficient Synthesis and Oxidative Folding Studies of Centipede Toxin RhTx

  • Jinyan Wang ,
  • Liying Dong ,
  • Ya'ni Liu ,
  • Xitong Chen ,
  • Yannan Ma ,
  • Hao Yin ,
  • Shanshan Du ,
  • Yunkun Qi ,
  • Kewei Wang
Expand
  • a School of Pharmacy, Qingdao University, Qingdao, Shandong 266073
    b College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042
* Corresponding authors. E-mail: ;

Received date: 2021-02-24

  Revised date: 2021-03-24

  Online published: 2021-04-12

Supported by

National Natural Science Foundation of China(21807063); National Natural Science Foundation of China(82003647); National Natural Science Foundation of China(81870653); China Postdoctoral Science Foundation(2019M652307); China Postdoctoral Science Foundation(2020T130332); Natural Science Foundation of Shandong Province(ZR2019BH045); Natural Science Foundation of Shandong Province(ZR2020QH100)

Abstract

The critical step for the synthesis of disulfide-containing peptides is the efficient construction of one or multiple disulfide bridges. Generally, the folding of disulfide bonds could be achieved by three chemical strategies,i.e. one-step oxidative folding strategy, multi-step oxidative folding strategy, and one-pot oxidative folding strategy. Because few comparative studies have been conducted on efficiencies of three strategies, the systematical research is desirable. Three folding strategies were separately applied for the preparation of centipede toxin RhTx. The results showed that the isolated yield of two-step oxidative folding strategy was higher than those of one-step and one-pot oxidative folding strategies. Besides, the one-pot oxidative folding strategy may induce severe misfoldings. The circular dichroism (CD) and activity tests indicated that disulfide bonds are critical for the structure and activity of RhTx. In addition, the efficient preparation of RhTx on tens of milligrams scale was achieved, affording molecular tools for the further biological and biophysical studies of RhTx targeting TRPV1. Overall, three mainstream oxidative folding strategies were systematically studied, which provided a valuable reference for the synthesis of disulfide-containing peptides.

Cite this article

Jinyan Wang , Liying Dong , Ya'ni Liu , Xitong Chen , Yannan Ma , Hao Yin , Shanshan Du , Yunkun Qi , Kewei Wang . Efficient Synthesis and Oxidative Folding Studies of Centipede Toxin RhTx[J]. Chinese Journal of Organic Chemistry, 2021 , 41(7) : 2800 -2809 . DOI: 10.6023/cjoc202102045

References

[1]
(a) Daly,N. L.; Craik,D. J. Curr. Opin. Chem. Biol. 2011, 15,362.
[1]
(b) Silva,P. M.; Gonçalves, S.; Santos,N. C. Front. Microbiol. 2014, 5,97.
[1]
(c) Tanemura, Y.; Mochizuki, Y.; Kumachi, S.; Nemoto, N. Biology 2015, 4,161.
[1]
(d) Wu, Q.; Liu, Z.; Fu, C.; Lin, Y.; Dai, Q. Chin. J. Org. Chem. 2010, 30,1517 (in Chinese).
[1]
( 吴巧玲, 刘珠果, 付超, 林原斌, 戴秋云, 有机化学, 2010, 30,1517.)
[1]
(e) Chi, Y-S.; Zhang,H. -B.; Ni,S. -J.; Huang,W. -L. Chin. J. Org. Chem. 2008, 28,416 (in Chinese).
[1]
( 迟玉石, 张惠斌, 倪帅健, 黄文龙, 有机化学, 2008, 28,416.)
[2]
(a) Go?ngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Chem. Rev. 2014, 114,901.
[2]
(b) Cemazar, M.; Kwon, S.; Mahatmanto, T.; Ravipati,A. S.; Craik,D. J. Curr. Top. Med. Chem. 2012, 12,1534.
[2]
(c) Akondi,K. B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik,D. J.; Lewis,R. J.; Alewood,P. F. Chem. Rev. 2014, 114,5815.
[2]
(d) Sun,S. -S.; Chen, J.; Zhao, R.; Bierer, D.; Wang, J.; Fang,G. -M.; Li,Y. -M. Tetrahedron Lett. 2019, 60,1197.
[2]
(e) Pan, X.; Li, Z.; Huang, X.; Huang, G.; Gao, S.; Shen, H.; Liu, L.; Lei, J.; Yan, N. Science 2019, 363,1309.
[2]
(f) Lin King, J.V.; Emrick, J.J.; Kelly, M.J.S.; Herzig, V.; King, G.F.; Medzihradszky, K.F.; Julius, D. Cell 2019, 178,1362.
[2]
(g) Guo,X. -Q.; Liang, J.; Li, Y.; Zhang, Y.; Huang, D.; Tian, C. Chin. Chem. Lett. 2018, 29,1139.
[2]
(h) Sun, D.; Liu, S.; Li, S.; Zhang, M.; Yang, F.; Wen, M.; Shi, P.; Wang, T.; Pan, M.; Chang, S.; Zhang, X.; Zhang, L.; Tian, C.; Liu, L. eLife 2020, 9,e57096.
[2]
(i) Zhu, W.; Hou, F.; Fang, J.; Bahrani Fard,M. R.; Liu, Y.; Ren, S.; Wu, S.; Qi, Y.; Sui, S.; Read,A. T.; Sherwood,J. M.; Zou, W.; Yu, H.; Zhang, J.; Overby,D. R.; Wang, N.; Ethier,C. R.; Wang, K. iScience 2021, 24,102042.
[2]
(j) Song, H.; Liu, C.; Wu, Y.; Hu, H.; Yan, F. Acta Chim. Sinica 2018, 76,95 (in Chinese).
[2]
( 宋慧, 刘超, 吴仪君, 胡宏岗, 阎芳, 化学学报, 2018, 76,95.)
[3]
(a) Xu, X.; Xu, Q.; Chen, F.; Shi, J.; Liu, Y.; Chu, Y.; Wan, S.; Jiang, T.; Yu, R. RSC Adv. 2019, 9,668.
[3]
(b) Zheng, Y.; Zhai, L.; Zhao, Y.; Wu, C. J. Am. Chem. Soc. 2015, 137,15094.
[3]
(c) Chen, C.; Gao, S.; Qu, Q.; Mi, P.; Tao, A.; Li,Y. -M. Chin. Chem. Lett. 2018, 29,1135.
[3]
(d) Liu, J.; Dong, S. Chin. Chem. Lett. 2018, 29,1131.
[3]
(e) Zhao, R.; Shi, P.; Chen, J.; Sun, S.; Chen, J.; Cui, J.; Wu, F.; Fang, G.; Tian, C.; Shi, J.; Bierer, D.; Liu, L.; Li,Y. -M. Chem. Sci. 2020, 11,7927.
[3]
(f) Ge, W.; Chen, J.; Zhang, Y.; Zong, L.; Zhang, M.; Dong, J. Chin. J. Org. Chem. 2017, 37,2409 (in Chinese).
[3]
( 葛巍巍, 陈静, 张也, 宗良, 张鸣, 董俊军, 有机化学, 2017, 37,2409.)
[4]
Yang, S.; Yang, F.; Wei, N.; Hong, J.; Li, B.; Luo, L.; Rong, M.; Yarov-Yarovoy, V.; Zheng, J.; Wang, K.; Lai, R. Nat. Commun. 2015, 6,8297.
[5]
(a) Chu, Y.; Qiu, P.; Yu, R. Toxins 2020, 12,230.
[5]
(b) Zhu, A.; Aierken, A.; Yao, Z.; Vu, S.; Tian, Y.; Zheng, J.; Yang, S.; Yang, F. Toxicon 2020, 178,41.
[5]
(c) Du, G.; Tian, Y.; Yao, Z.; Vu, S.; Zheng, J.; Chai, L.; Wang, K.; Yang, S. J. Biol. Chem. 2020, 295,9641.
[5]
(d) Luo, L.; Wang, Y.; Li, B.; Xu, L.; Kamau,P. M.; Zheng, J.; Yang, F.; Yang, S.; Lai, R. Nat. Commun. 2019, 10,2134.
[5]
(e) Ombati, R.; Luo, L.; Yang, S.; Lai, R. Toxicon 2018, 154,60.
[5]
(f) Yu, R.; Liu, H.; Wang, B.; Harvey,P. J.; Wei, N.; Chu, Y. RSC Adv. 2020, 10,2141.
[6]
Lyu,H. -N.; Wei,N. -N.; Tu,P. -F.; Wang, K.; Jiang, Y. Nat. Prod. Res. 2020, 34,1068.
[7]
(a) Karas,J. A.; Patil,N. A.; Tailhades, J.; Sani,M. -A.; Scanlon,D. B.; Forbes,B. E.; Gardiner, J.; Separovic, F.; Wade,J. D.; Hossain,M. A. Angew. Chem.,Int. Ed. 2016, 55,14743.
[7]
(b) Tang, S.; Si,Y. -Y.; Wang,Z. -P.; Mei,K. -R.; Chen, X.; Cheng,J. -Y.; Zheng,J. -S.; Liu, L. Angew. Chem.,Int. Ed. 2015, 54,5713.
[8]
(a) Qu, Q.; Gao, S.; Li,Y. -M. J. Pept. Sci. 2018, 24,e3112.
[8]
(b) Muttenthaler, M.; Nevin,S. T.; Grishin,A. A.; Ngo,S. T.; Choy,P. T.; Daly,N. L.; Hu,S. -H.; Armishaw,C. J.; Wang,C. -I.A.; Lewis,R. J.; Martin,J. L.; Noakes,P. G.; Craik,D. J.; Adams,D. J.; Alewood,P. F. J. Am. Chem. Soc. 2010, 132,3514.
[8]
(c) Lan, H.; Wu, K.; Zheng, Y.; Pan, M.; Huang,Y. -C.; Gao, S.; Zheng,Q. -Y.; Zheng,J. -S.; Li,Y. -M.; Xiao, B.; Liu, L. J. Pept. Sci. 2016, 22,320.
[8]
(d) Chang,H. -N.; Liu,B. -Y.; Qi,Y. -K.; Zhou, Y.; Chen,Y. -P.; Pan,K. -M.; Li,W. -W.; Zhou,X. -M.; Ma,W. -W.; Fu,C. -Y.; Qi,Y. -M.; Liu, L.; Gao,Y. -F. Angew. Chem.,Int. Ed. 2015, 54,11760.
[8]
(e) Zhou, X.; Zuo, C.; Li, W.; Shi, W.; Zhou, X.; Wang, H.; Chen, S.; Du, J.; Chen, G.; Zhai, W.; Zhao, W.; Wu, Y.; Qi, Y.; Liu, L.; Gao, Y. Angew. Chem.,Int. Ed. 2020, 59,15114.
[9]
(a) Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y. Org. Lett. 2015, 17,2202.
[9]
(b) Jordan,J. B.; Poppe, L.; Haniu, M.; Arvedson, T.; Syed, R.; Li, V.; Kohno, H.; Kim, H.; Schnier,P. D.; Harvey,T. S.; Miranda,L. P.; Cheetham, J.; Sasu,B. J. J. Biol. Chem. 2009, 284,24155.
[10]
(a) Dowell, C.; Olivera,B. M.; Garrett,J. E.; Staheli,S. T.; Watkins, M.; Kuryatov, A.; Yoshikami, D.; Lindstrom,J. M.; McIntosh,J. M. J. Neurosci. 2003, 23,8445.
[10]
(b) Luo, S.; Akondi,K. B.; Zhangsun, D.; Wu, Y.; Zhu, X.; Hu, Y.; Christensen, S.; Dowell, C.; Daly,N. L.; Craik,D. J.; Wang,C. -I.A.; Lewis,R. J.; Alewood,P. F.; McIntosh,J. M. J. Biol. Chem. 2010, 285,12355.
[10]
(c) Luo, S.; Christensen, S.; Zhangsun, D.; Wu, Y.; Hu, Y.; Zhu, X.; Chhabra, S.; Norton,R. S.; McIntosh,J. M. PLoS One 2013, 8,e54648.
[10]
(d) Shi, J.; So,L. -Y.; Chen, F.; Liang, J.; Chow,H. -Y.; Wong,K. -Y.; Wan, S.; Jiang, T.; Yu, R. J. Pept. Sci. 2018, 24,e3087.
[10]
(e) Wu, Y.; Wu, X.; Yu, J.; Zhu, X.; Zhangsun, D.; Luo, S. Molecules 2014, 19,966.
[10]
(f) Wu, Y; Wu, X.; Zhangsun, D.; Luo, S. Biotechnol. Bull. 2013, 7,184 (in Chinese).
[10]
( 吴勇, 吴潇洒, 长孙东亭, 罗素兰, 生物技术通报, 2013, 7,184.)
[11]
(a) Cuthbertson, A.; Indrevoll, B. Org. Lett. 2003, 5,2955.
[11]
(b) Naraga,A. M.B.; Belleza,O. J.V.; Villaraza,A. J.L. RSC Adv. 2018, 8,36579.
[11]
(c) Khemtémourian, L.; Desbenoit, N; Mahesh, P.; Chatterjee, S.; Deschemin,J. -C.; Vaulont, S.; Tomas, A.; Sari,M. -A.; Artaud, I. Protein Pept. Lett. 2012, 19,219.
[12]
(a) Cui,H. -K.; Guo, Y.; He, Y.; Wang,F. -L.; Chang,H. -N.; Wang,Y. -J.; Wu,F. -M.; Tian,C. -L.; Liu, L. Angew. Chem.,Int. Ed. 2013, 52,9558.
[12]
(b) Guo, Y.; Sun,D. -M.; Wang,F. -L.; He, Y.; Liu, L.; Tian,C. -L. Angew. Chem.,Int. Ed. 2015, 54,14276.
[12]
(c) Xu, Y.; Wang, T.; Guan,C. -J.; Li,Y. -M.; Liu, L.; Shi, J.; Bierer, D. Tetrahedron Lett. 2017, 58,1677.
[12]
(d) Wang, T.; Fan, J.; Chen,X. -X.; Zhao, R.; Xu, Y.; Bierer, D.; Liu, L.; Li,Y. -M.; Shi, J.; Fang,G. -M. Org. Lett. 2018, 20,6074.
[12]
(e) Qi,Y. -K.; Qu, Q.; Bierer, D.; Liu, L. Chem.-Asian J. 2020, 15,2793.
[12]
(f) Qu, Q.; Gao, S.; Wu, F.; Zhang,M. -G.; Li, Y.; Zhang,L. -H.; Bierer, D.; Tian,C. -L.; Zheng,J. -S.; Liu, L. Angew. Chem.,Int. Ed. 2020, 59,6037.
[12]
(g) Chen, J.; Sun, S.; Zhao, R.; Xi,C. -P.; Qiu, W.; Wang, N.; Wang, Y.; Bierer, D.; Shi, J.; Li,Y. -M. ChemistrySelect 2020, 5,1359.
[12]
(h) Guo, Y.; Liu, C.; Song, H.; Wang,F. -L.; Zou, Y.; Wu,Q. -Y.; Hu,H. -G. RSC Adv. 2017, 7,2110.
[12]
(i) Huang,D. -L.; Bai,J. -S.; Wu, M.; Wang, X.; Riedl, B.; Pook, E.; Alt, C.; Erny, M.; Li,Y. -M.; Bierer, D.; Shi, J.; Fang,G. -M. Chem. Commun. 2019, 55,2821.
[12]
(j) Wang,F. -L.; Guo, Y.; Li,S. -J.; Guo,Q. -X.; Shi, J.; Li,Y. -M. Org. Biomol. Chem. 2015, 13,6286.
[12]
(k) Wang, T.; Kong,Y. -F.; Xu, Y.; Fan, J.; Xu,H. -J.; Bierer, D.; Wang, J.; Shi, J.; Li,Y. -M. Tetrahedron Lett. 2017, 58,3970.
[13]
(a) Zheng,J. -S.; Tang, S.; Qi,Y. -K.; Wang,Z. -P.; Liu, L. Nat. Protoc. 2013, 8,2483.
[13]
(b) Qi,Y. -K.; Tang, S.; Huang,Y. -C.; Pan, M.; Zheng,J. -S.; Liu, L. Org. Biomol. Chem. 2016, 14,4194.
[13]
(c) Qi,Y. -K.; He,Q. -Q.; Ai,H. -S.; Guo, J.; Li,J. -B. Chem. Commun. 2017, 53,4148.
[13]
(d) Qi,Y. -K.; He,Q. -Q.; Ai,H. -S.; Li,J. -B.; Zheng,J. -S. Synlett 2017, 28,1907.
[13]
(e) Li,J. -B.; Qi,Y. -K.; He,Q. -Q.; Ai,H. -S.; Liu,S. -L.; Wang,J. -X.; Zheng,J. -S.; Liu, L.; Tian, C. Cell Res. 2018, 28,257.
[13]
(f) Qi,Y. -K.; Ai,H. -S.; Li,Y. -M.; Yan, B. Front. Chem. 2018, 6,19.
[14]
(a) Li, Z.; Zhang, B.; Zuo, C.; Liu, L. Chin. J. Org. Chem. 2018, 38,2412 (in Chinese).
[14]
( 黎子琛, 张宝昌, 左冲, 刘磊, 有机化学, 2018, 38,2412.)
[14]
(b) Qi,Y. -K.; Si,Y. -Y.; Du,S. -S.; Liang, J.; Wang,K. W.; Zheng,J. -S. Sci. China: Chem. 2019, 62,299.
[14]
(c) Zhang, B.; Deng, Q.; Zuo, C.; Yan, B.; Zuo, C.; Cao,X. -X.; Zhu,T. F.; Zheng,J. -S.; Liu, L. Angew. Chem.,Int. Ed. 2019, 58,12231.
[14]
(d) Zuo, C.; Shi,W. -W.; Chen,X. -X.; Glatz, M.; Riedl, B.; Flamme, I.; Pook, E.; Wang, J.; Fang,G. -M.; Bierer, D.; Liu, L. Sci. China: Chem. 2019, 62,1371.
[14]
(e) Zhang, B.; Li, Y.; Shi, W.; Wang, T.; Zhang, F.; Liu, L. Chem. Res. Chin. Univ. 2020, 36,733.
[14]
(f) Tang, S.; Zheng, J.; Yang, K.; Liu, L. Acta Chim. Sinica 2012, 70,1471 (in Chinese).
[14]
( 唐姗, 郑基深, 杨可, 刘磊, 化学学报, 2012, 70,1471.)
[14]
(g) Fang,G. -M.; Li,Y. -M.; Shen, F.; Huang,Y. -C.; Li,J. -B.; Lin, Y.; Cui,H. -K.; Liu, L. Angew. Chem.,Int. Ed. 2011, 50,7645.
Outlines

/