NOTES

Design and Synthesis of Novel Nature-Inspired Stilbene Analogues as Potential Topoisomerase 1 Inhibitors

  • Qi Lu ,
  • Feixia Ye ,
  • Xiaotong Sun ,
  • Jianquan Weng ,
  • Qian Yu ,
  • Dexuan Hu
Expand
  • a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014
    b School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006
    c School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006
*Corresponding authors. E-mail: ;

Received date: 2021-02-19

  Revised date: 2021-04-16

  Online published: 2021-05-14

Supported by

Natural Science Foundation of Zhejiang Province(LY17C140003)

Abstract

In order to find novel antitumor drug leads, twenty-three nature-inspired stilbene analogues containing thiazole moiety were designed and synthesized, and their structures were confirmed by NMR and ESI-HRMS. These compounds were screened for their topoisomerase I (Top1) inhibitory activity using Top1-mediated relaxation assay, and (E)-5-bromo-2- (2-chlorostyryl)-4-(4-fluorophenyl)thiazole (6k) possessed promising Top1 inhibitory activity. Molecular docking was also established to study the structure-activity relationship and a good correlation was observed between Top1 inhibitory activity and molecular docking study. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against human breast cancer (MCF-7) and human colon cancer (HCT116) cell lines indicated that (E)-5-bromo-4-(4-fluorophenyl)- 2-(4-(trifluoromethyl)styryl)thiazole (6e), (E)-5-bromo-2-(2-chlorostyryl)-4-(4-fluorophenyl)thiazole (6k), and (E)-5-bromo- 2-(4-chlorostyryl)-4-(4-fluorophenyl)thiazole (6l) showed high cytotoxicity at low micromolar concentrations.

Cite this article

Qi Lu , Feixia Ye , Xiaotong Sun , Jianquan Weng , Qian Yu , Dexuan Hu . Design and Synthesis of Novel Nature-Inspired Stilbene Analogues as Potential Topoisomerase 1 Inhibitors[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3321 -3329 . DOI: 10.6023/cjoc202102031

References

[1]
Champoux, J. J. Annu. Rev. Biochem. 2001, 70, 369.
[2]
Stewart, L.; Redinbo, M. R.; Qui, X.; Hol, W. G. J.; Champoux, J. J. Science 1998, 279, 1534.
[3]
Berger, J. M.; Gamblin, S. J.; Harrison, S. C.; Wang, J. C. Nature 1996, 379, 225.
[4]
Lian, Q.; Xu, J.; Yan, S.; Huang, M.; Ding, H.; Sun, X.; Bi, A.; Ding, J.; Sun, B.; Geng, M. Cell Res. 2017, 27, 784.
[5]
Pommier, Y. Nat. Rev. Cancer 2006, 6, 789.
[6]
Thomas, A.; Pommier, Y. Clin. Cancer Res. 2019, 25, 6581.
[7]
Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770.
[8]
Loiseleur, O. Chimia 2017, 71, 810.
[9]
Lin, Z. Q.; Xia, W. L.; Liu, R. Y.; Jiang, S. H.; Ma, Z. Q. Chin. J. Org. Chem. 2020, 40, 2980. (in Chinese)
[9]
(林芷晴, 夏婉铃, 刘仁义, 姜少华, 马志强, 有机化学, 2020, 40, 2980.)
[10]
Rimando, A. M.; Cuendet, M.; Desmarchelier, C.; Mehta, R. G.; Pezzuto, J. M.; Duke, S. O. J. Agric. Food Chem. 2002, 50, 3453.
[11]
Kimura, Y.; Okuda, H.; Arichi, S. Biochim. Biophys. Acta 1985, 834, 275.
[12]
Stivala, L. A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U. M.; Albini, A.; Prosperi, E.; Vannini, V. J. Biol. Chem. 2001, 276, 22586.
[13]
Mahady, G. B.; Pendland, S. L.; Chadwick, L. R. Am. J. Gastroenterol. 2003, 98, 1440.
[14]
Shi, D.; An, R.; Zhang, W. B.; Zhang, G. L.; Yu, Z. G. J. Agric. Food Chem. 2017, 65, 60.
[15]
Kronenwerth, M.; Dauth, C.; Kaiser, M.; Pemberton, I.; Bode, H. B. Eur. J. Org. Chem. 2014, 36, 8026.
[16]
Mizuno, C. S.; Schrader, K. K.; Rimando, A. M. J. Agric. Food Chem. 2008, 56, 9140.
[17]
Weng, J. Q.; Ali, A.; Estep, A.; Becnel, J.; Meyer, S. L. F.; Wedge, D. E.; Jacob, M.; Rimando, A. M. Chem. Biodiversity 2016, 13, 1165.
[18]
Lu, Q.; Yu, Q.; Zhu, Y. B.; Weng, J. Q.; Yuan, J.; Hu, D. X.; Chen, J.; Liu, X. H.; Tan, C. X. J. Mol. Struct. 2019, 1180, 780.
[19]
Mabkhot, Y. N.; Alharbi, M. M.; Al-Showiman, S. S.; Ghabbour, H. A.; Kheder, N. A.; Soliman, S. M.; Frey, W. Chem. Cent. J. 2018, 12, 56.
[20]
Kouatly, O.; Geronikaki, A.; Kamoutsis, C.; Hadjipavlou-Litina, D.; Eleftheriou, P. Eur. J. Med. Chem. 2009, 44, 1198.
[21]
Pember, S. O.; Mejia, G. L.; Price, T. J.; Pasteris, R. J. Bioorg. Med. Chem. Lett. 2016, 26, 2965.
[22]
Koti, R. S.; Kolavi, G. D.; Hegde, V. S.; Khazi, I. M. Indian J. Chem. B 2006, 45, 1900.
[23]
Weng, J. Q.; Tan, C. X.; Liu, X. H. J. Pestic. Sci. 2012, 37, 164.
[24]
Yu, H. B.; Qin, Z. F.; Dai, H.; Zhang, X.; Qin, X.; Wang, T. T.; Fang, J. X. J. Agric. Food Chem. 2018, 56, 11356.
[25]
Weng, J. Q.; Liu, X. H.; Huang, H.; Tan, C. X.; Chen, J. Molecules 2012, 17, 989.
[26]
Zhang, J. H.; Zhu, Y. B.; Weng, J. Q.; Yu, Q.; Yuan, J.; Chen, J. Chin. J. Org. Chem. 2020, 40, 1055. (in Chinese)
[26]
(章俊辉, 朱亚波, 翁建全, 余茜, 袁静, 陈杰, 有机化学, 2020, 40, 1055.)
[27]
Kong, Y. L.; Xu, W. X.; Liu, X. H.; Weng, J. Q. Chin. Chem. Lett. 2020, 31, 3245.
[28]
Xu, W. X.; Ye, F. X.; Liu, X. H.; Weng, J. Q. Tetrahedron Lett. 2020, 61, 151807.
[29]
Dou, D. F.; He, G. J.; Li, Y.; Lai, Z.; Wei, L. Q.; Alliston, K. R.; Lushington, G. H.; Eichhorn, D. M.; Groutas, W. C. Bioorg. Med. Chem. 2010, 18, 1093.
[30]
Kocabas, E.; Sariguney, A. B.; Coskun, A. Heterocycles 2010, 81, 2849.
[31]
Zhu, D. J.; Chen, J. X.; Wu, D. Z.; Liu, M. C.; Ding, J. C.; Wu, H. Y. J. Chem. Res. 2009, (2), 84.
[32]
Wetherill, J. P., Hann, R. M. J. Am. Chem. Soc. 1934, 56, 970.
[33]
Pommier, Y.; Covey, J. M.; Kerngan, D.; Markovits, J.; Pham, R. Nucleic Acids Res. 1987, 15, 6713.
[34]
Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, A. B.; Jr.; Stewart, L. P. Natl. Acad. Sci. U. S. A. 2002, 99, 15387.
Outlines

/