Chinese Journal of Organic Chemistry >
Design and Synthesis of Novel Nature-Inspired Stilbene Analogues as Potential Topoisomerase 1 Inhibitors
Received date: 2021-02-19
Revised date: 2021-04-16
Online published: 2021-05-14
Supported by
Natural Science Foundation of Zhejiang Province(LY17C140003)
In order to find novel antitumor drug leads, twenty-three nature-inspired stilbene analogues containing thiazole moiety were designed and synthesized, and their structures were confirmed by NMR and ESI-HRMS. These compounds were screened for their topoisomerase I (Top1) inhibitory activity using Top1-mediated relaxation assay, and (E)-5-bromo-2- (2-chlorostyryl)-4-(4-fluorophenyl)thiazole (6k) possessed promising Top1 inhibitory activity. Molecular docking was also established to study the structure-activity relationship and a good correlation was observed between Top1 inhibitory activity and molecular docking study. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against human breast cancer (MCF-7) and human colon cancer (HCT116) cell lines indicated that (E)-5-bromo-4-(4-fluorophenyl)- 2-(4-(trifluoromethyl)styryl)thiazole (6e), (E)-5-bromo-2-(2-chlorostyryl)-4-(4-fluorophenyl)thiazole (6k), and (E)-5-bromo- 2-(4-chlorostyryl)-4-(4-fluorophenyl)thiazole (6l) showed high cytotoxicity at low micromolar concentrations.
Key words: natural stilbene; thiazole; topoisomerase 1 inhibitor; synthesis; cytotoxicity
Qi Lu , Feixia Ye , Xiaotong Sun , Jianquan Weng , Qian Yu , Dexuan Hu . Design and Synthesis of Novel Nature-Inspired Stilbene Analogues as Potential Topoisomerase 1 Inhibitors[J]. Chinese Journal of Organic Chemistry, 2021 , 41(8) : 3321 -3329 . DOI: 10.6023/cjoc202102031
[1] | Champoux, J. J. Annu. Rev. Biochem. 2001, 70, 369. |
[2] | Stewart, L.; Redinbo, M. R.; Qui, X.; Hol, W. G. J.; Champoux, J. J. Science 1998, 279, 1534. |
[3] | Berger, J. M.; Gamblin, S. J.; Harrison, S. C.; Wang, J. C. Nature 1996, 379, 225. |
[4] | Lian, Q.; Xu, J.; Yan, S.; Huang, M.; Ding, H.; Sun, X.; Bi, A.; Ding, J.; Sun, B.; Geng, M. Cell Res. 2017, 27, 784. |
[5] | Pommier, Y. Nat. Rev. Cancer 2006, 6, 789. |
[6] | Thomas, A.; Pommier, Y. Clin. Cancer Res. 2019, 25, 6581. |
[7] | Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770. |
[8] | Loiseleur, O. Chimia 2017, 71, 810. |
[9] | Lin, Z. Q.; Xia, W. L.; Liu, R. Y.; Jiang, S. H.; Ma, Z. Q. Chin. J. Org. Chem. 2020, 40, 2980. (in Chinese) |
[9] | (林芷晴, 夏婉铃, 刘仁义, 姜少华, 马志强, 有机化学, 2020, 40, 2980.) |
[10] | Rimando, A. M.; Cuendet, M.; Desmarchelier, C.; Mehta, R. G.; Pezzuto, J. M.; Duke, S. O. J. Agric. Food Chem. 2002, 50, 3453. |
[11] | Kimura, Y.; Okuda, H.; Arichi, S. Biochim. Biophys. Acta 1985, 834, 275. |
[12] | Stivala, L. A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U. M.; Albini, A.; Prosperi, E.; Vannini, V. J. Biol. Chem. 2001, 276, 22586. |
[13] | Mahady, G. B.; Pendland, S. L.; Chadwick, L. R. Am. J. Gastroenterol. 2003, 98, 1440. |
[14] | Shi, D.; An, R.; Zhang, W. B.; Zhang, G. L.; Yu, Z. G. J. Agric. Food Chem. 2017, 65, 60. |
[15] | Kronenwerth, M.; Dauth, C.; Kaiser, M.; Pemberton, I.; Bode, H. B. Eur. J. Org. Chem. 2014, 36, 8026. |
[16] | Mizuno, C. S.; Schrader, K. K.; Rimando, A. M. J. Agric. Food Chem. 2008, 56, 9140. |
[17] | Weng, J. Q.; Ali, A.; Estep, A.; Becnel, J.; Meyer, S. L. F.; Wedge, D. E.; Jacob, M.; Rimando, A. M. Chem. Biodiversity 2016, 13, 1165. |
[18] | Lu, Q.; Yu, Q.; Zhu, Y. B.; Weng, J. Q.; Yuan, J.; Hu, D. X.; Chen, J.; Liu, X. H.; Tan, C. X. J. Mol. Struct. 2019, 1180, 780. |
[19] | Mabkhot, Y. N.; Alharbi, M. M.; Al-Showiman, S. S.; Ghabbour, H. A.; Kheder, N. A.; Soliman, S. M.; Frey, W. Chem. Cent. J. 2018, 12, 56. |
[20] | Kouatly, O.; Geronikaki, A.; Kamoutsis, C.; Hadjipavlou-Litina, D.; Eleftheriou, P. Eur. J. Med. Chem. 2009, 44, 1198. |
[21] | Pember, S. O.; Mejia, G. L.; Price, T. J.; Pasteris, R. J. Bioorg. Med. Chem. Lett. 2016, 26, 2965. |
[22] | Koti, R. S.; Kolavi, G. D.; Hegde, V. S.; Khazi, I. M. Indian J. Chem. B 2006, 45, 1900. |
[23] | Weng, J. Q.; Tan, C. X.; Liu, X. H. J. Pestic. Sci. 2012, 37, 164. |
[24] | Yu, H. B.; Qin, Z. F.; Dai, H.; Zhang, X.; Qin, X.; Wang, T. T.; Fang, J. X. J. Agric. Food Chem. 2018, 56, 11356. |
[25] | Weng, J. Q.; Liu, X. H.; Huang, H.; Tan, C. X.; Chen, J. Molecules 2012, 17, 989. |
[26] | Zhang, J. H.; Zhu, Y. B.; Weng, J. Q.; Yu, Q.; Yuan, J.; Chen, J. Chin. J. Org. Chem. 2020, 40, 1055. (in Chinese) |
[26] | (章俊辉, 朱亚波, 翁建全, 余茜, 袁静, 陈杰, 有机化学, 2020, 40, 1055.) |
[27] | Kong, Y. L.; Xu, W. X.; Liu, X. H.; Weng, J. Q. Chin. Chem. Lett. 2020, 31, 3245. |
[28] | Xu, W. X.; Ye, F. X.; Liu, X. H.; Weng, J. Q. Tetrahedron Lett. 2020, 61, 151807. |
[29] | Dou, D. F.; He, G. J.; Li, Y.; Lai, Z.; Wei, L. Q.; Alliston, K. R.; Lushington, G. H.; Eichhorn, D. M.; Groutas, W. C. Bioorg. Med. Chem. 2010, 18, 1093. |
[30] | Kocabas, E.; Sariguney, A. B.; Coskun, A. Heterocycles 2010, 81, 2849. |
[31] | Zhu, D. J.; Chen, J. X.; Wu, D. Z.; Liu, M. C.; Ding, J. C.; Wu, H. Y. J. Chem. Res. 2009, (2), 84. |
[32] | Wetherill, J. P., Hann, R. M. J. Am. Chem. Soc. 1934, 56, 970. |
[33] | Pommier, Y.; Covey, J. M.; Kerngan, D.; Markovits, J.; Pham, R. Nucleic Acids Res. 1987, 15, 6713. |
[34] | Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, A. B.; Jr.; Stewart, L. P. Natl. Acad. Sci. U. S. A. 2002, 99, 15387. |
/
〈 |
|
〉 |