ARTICLES

Study on the Cyanide Substitution Reaction of Acetone Cannolhydrin as Cyanogen Source

  • Fang Guo ,
  • Jun You ,
  • Wenju Wu ,
  • Yanchao Yu ,
  • Bin Jing ,
  • Bo Liu
Expand
  • 1 Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, 150040
* Corresponding authors. E-mail: ;

Received date: 2021-02-19

  Revised date: 2021-03-23

  Online published: 2021-04-16

Supported by

Natural Science Foundation of Heilongjiang Province(LH2019B010); National Natural Science Foundation of China(21908034); National Natural Science Foundation of China(22008045)

Abstract

The cyano substitution reaction is an important method for introducing cyano functional groups in organic synthesis. In this paper, a series of cyano compounds were synthesized by nucleophilic substitution reaction using acetone cyanohydrin as cyanation reagent and aliphatic haloalkanes R—X (X=Cl, Br, I) as substrates. The results show that the cyanation product can be obtained by reacting the acetone cyanohydrin with the corresponding halogenated alkanes at 50 ℃, and the yield can reach 70%~99%. The reaction solvent is the mixture of tetrahydrofuran (THF) and 1,3-dime- thylimidazolinone (DMI) (volume ratio of 3:1), and the base is LiOH?H2O. This reaction uses cheap and low toxicity acetone cyanohydrin instead of highly toxic sodium cyanide or other expensive cyanide reagents requiring harsh conditions and it also does not require precious metals as catalysts. The reaction conditions is mild so that it has extensive application and great value of practical application.

Cite this article

Fang Guo , Jun You , Wenju Wu , Yanchao Yu , Bin Jing , Bo Liu . Study on the Cyanide Substitution Reaction of Acetone Cannolhydrin as Cyanogen Source[J]. Chinese Journal of Organic Chemistry, 2021 , 41(5) : 1968 -1973 . DOI: 10.6023/cjoc20210203

References

[1]
(a) Fleming, F. F.; Yao, L.; Ravikumar, P. C. J. Med. Chem. 2010, 53, 7902.
[1]
(b) Dhillon, S.; Weber, J. Drugs 2009, 69, 2103.
[1]
(c) Ma, D. Y. Chin. J. Org. Chem. 2008, 28, 1439. (in Chinese).
[1]
(马大友, 有机化学, 2008, 28, 1439).
[2]
(a) Yu, Z. W.; Li, L. Y.; Shen, Z. M. Chin. J. Org. Chem. 2017, 37, 1273. (in Chinese).
[2]
(俞峥炜, 李林奕, 沈增明, 有机化学, 2017, 37, 1273.)
[2]
(b) Yan, G.; Zhang, Y.; Wang, J. Adv. Synth. Catal. 2017, 359, 4068.
[2]
(c) Zhou, H. Y.; Li, N. N.; Yang, J. Y. Chin. J. Org. Chem. 2016, 36, 502. (in Chinese).
[2]
(周红艳, 李娜娜, 杨靖亚, 有机化学, 2016, 36, 502.)
[2]
(d) Wang, H. S.; Zeng, J. E. Chin. J. Org. Chem. 2012, 32, 934. (in Chinese).
[2]
(王宏社, 曾君娥, 有机化学, 2012, 32, 934.)
[2]
(e) Fang, G. N.; You, J.; Yu, Y. C.; Jing, J. K.; Liu, B.; Wu, W. J. Chin. J. Org. Chem. 2020, 40, 2871. (in Chinese).
[2]
(房观念, 由君, 喻艳超, 荆军凯, 刘波, 武文菊, 有机化学, 2020, 40, 2871.)
[3]
(a) Shimizu, S.; Kito, K.; Sasaki, Y. Chem. Commun. 1997, 17, 1629.
[3]
(b) Fort, Y.; Dubosclard-Gottardi, C. Synth. Commun. 1996, 26, 2811.
[3]
(c) Mouradzadegun, A.; Ganjali, M. R.; Mostafavi, M. A. Appl. Organomet. Chem. 2018, 32, e4214.
[3]
(d) Cao, Y. Q.; Chen, B. H.; Pei, B. G. Synth. Commun. 2001, 31, 2203.
[4]
(a) Ren, Y.; Yan, M.; Zhao, S. Tetrahedron Lett. 2011, 52, 5107.
[4]
(b) Saha, D.; Adak, L.; Mukherjee, M. Org. Biomol. Chem. 2012, 10, 952.
[4]
(c) Xia, A.; Xie, X.; Chen, H. Org. Lett. 2018, 20, 773.
[4]
(d) Ratani, T. S.; Bachman, S.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 13902.
[4]
(e) Nenajdenko, V. G.; Muzalevskiy, V. M.; Shastin, A. V. J. Fluorine Chem. 2007, 128, 818.
[4]
(f) Wang C, Wang C, Wang Q. Chem.-Eur. J. 2007, 13, 6484.
[5]
(a) Yabe, O.; Mizufune, H.; Ikemoto, T. Synlett 2009,1291.
[5]
(b) Satoh, Y.; Obora, Y. RSC Adv. 2014, 4, 15736.
[5]
(c) Zieger, H. E.; Wo, S. J. Org. Chem. 1994, 59, 3838.
[5]
(d) Echigo, Y.; Watanabe, Y.; Mukaiyama, T. Chem. Lett. 1977, 6, 697.
[5]
(e) Munemori, D.; Tsuji, H.; Uchida, K. Synthesis 2014, 46, 2747.
[6]
Powell, K. J.; Han, L. C.; Sharma, P. Org. Lett. 2014, 16, 2158.
[7]
Dowd, P.; Wilk, B. K.; Wlostowski, M. Synth. Commun. 1993, 23, 2323.
[8]
Shapiro, E. A.; Pereverzeva, Y. O.; Nefedov, A. O.; éismont, M. Y. Russ. Chem. B 1989, 38, 2432.
[9]
(a) Meng, H.; Gao, S.; Luo, M. Eur. J. Org. Chem. 2006,4617.
[9]
(b) Geng, H.; Huang, P. Q. Tetrahedron 2015, 71, 3795.
[9]
(c) Lammens, T. M.; Le N?tre, J.; Franssen, M. C. ChemSusChem. 2011, 4, 785.
[9]
(d) Dai, J. J.; Huang, Y. B.; Fang, C. ChemSusChem 2012, 5, 617.
[9]
(e) Cook, M. C.; Witherell, R. D.; White, R. L. Lett. Drug Des. Discovery 2010, 7, 9.
[9]
(f) Temelli, B.; Unaleroglu, C. Synthesis 2014, 46, 1407.
[9]
(g) Barhdadi, R.; Gal, J.; Heintz, M. Tetrahedron 1993, 49, 5091.
[9]
(h) Black, P. J.; Edwards, M. G.; Williams, J. M. Eur. J. Org. Chem. 2006,4367.
[9]
(i) Camps, F.; Gasol, V.; Guerrero, A. Synth. Commun. 1988, 18, 445.
[9]
(j) Boivin, J; Laurent, K. E.; Zard, S. Z. Tetrahedron 1995, 51, 2573.
[9]
(k) Ghiaci, M.; Sedaghat, M. E.; Kalbasi, R. J. Tetrahedron 2005, 61, 5529.
[9]
(l) DiBiase, S. A.; Wolak, R. P.; Dishong, D. M. J. Org. Chem. 1980, 45, 3630.
[9]
(m) Guaragna, A.; Mauro, D. N.; Pedatella, P. J. Labelled Compd. Radiopharm. 2006, 49, 675.
[9]
(n) Hu, L.Z; Hussain, M. I.; Deng, Q. F.; Liu, Q.; Feng, Y.Y; Zhang, X. H.; Xiong, Y. Tetrahedron 2019, 75, 308.
[9]
(o) Laroche, C.; Harakat, D.; Bertus, P. Org. Biomol. Chem. 2005, 3, 3482.
[9]
(p) Jouanno, L. A.; Sabot, C.; Renard, P. Y. J. Org. Chem. 2012. 77, 8549.
[9]
(q) Christophe, L.; Vincent, C.; Ludwig, C.; Cyril, O.; Louis, F. Eur. J. Org. Chem. 2017.2118.
Outlines

/