REVIEWS

Recent Advances in Visible-Light-Mediated Minisci Reactions

  • Jianyang Dong ,
  • Yuxiu Liu ,
  • Qingmin Wang
Expand
  • State Key Laboratory of Elemento-organic Chemistry, Frontiers Science Center for New Organic Matter of Nankai University, College of Chemistry, Nankai University, Tianjin 300071
* Corresponding author. E-mail:

Received date: 2021-04-12

  Revised date: 2021-05-04

  Online published: 2021-06-02

Supported by

National Natural Science Foundation of China(21732002); National Natural Science Foundation of China(21672117); Frontiers Science Center for New Organic Matter of Nankai University(63181206)

Abstract

N-Heteroarenes are present in a wide variety of natural products, small-molecule drugs, organic materials, and ligands. Therefore, the methods for selective C—H functionalization of N-heteroarenes are highly sought-after for late-stage modification of pharmaceuticals. A useful tool for the synthesis of alkyl-substituted nitrogen-containing aromatic rings is the Minisci reaction, in which a protonated N-heteroarene is attacked by an alkyl radical under oxidative and acidic conditions. Classic Minisci reactions often require the use of excess oxidant, excess acid, and high temperature, which greatly limits the scope of the substrates. With the rapid development of photocatalysis in organic synthesis, in recent years, a variety of photocatalytic Minisci reactions have been reported, and successfully been applied to the synthesis of drugs. In this paper, the visible light mediated Minisci reactions in recent years are briefly reviewed.

Cite this article

Jianyang Dong , Yuxiu Liu , Qingmin Wang . Recent Advances in Visible-Light-Mediated Minisci Reactions[J]. Chinese Journal of Organic Chemistry, 2021 , 41(10) : 3771 -3791 . DOI: 10.6023/cjoc202104024

References

[1]
Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P. K.; Bhutani, H.; Paul, A. T.; Kumar, R. J. Med. Chem. 2021, 64, 2339.
[2]
Zhang, J.-R.; Xu, L.; Liao, Y.-Y.; Deng, J.-C.; Tang, R.-Y. Chin. J. Chem. 2017, 35, 271.
[3]
Proctor, R. S. J.; Phipps, R. J. Angew. Chem., nt. Ed. 2019, 58, 13666.
[4]
Duncton, M. A. J. Med. Chem. Commun. 2011, 2, 1135.
[5]
Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal. 2017, 7, 4057.
[6]
Wang, J.; Li, G. X.; He, G.; Chen, G. Asian J. Org. Chem. 2018, 7, 1307.
[7]
Genovino, J.; Lian, Y.; Zhang, Y.; Hope, T. O.; Juneau, A.; Gagné, Y.; Ingle, G.; Frenette, M. Org. Lett. 2018, 20, 3229.
[8]
Xie, L.-Y.; Jiang, L.-L.; Tan, J.-X.; Wang, Y.; Xu, X.-Q.; Zhang, B.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 14153.
[9]
Jia, W.; Jian, Y.; Huang, B.; Yang, C.; Xia, W. Synlett 2018, 29, 1881.
[10]
Lu, J.; He, X.-K.; Cheng, X.; Zhang, A.-J.; Xu, G.-Y.; Xuan, J. Adv. Synth. Catal. 2020, 362, 2178.
[11]
Candish, L.; Freitag, M.; Gensch, T.; Glorius, F. Chem. Sci. 2017, 8, 3618.
[12]
Pratsch, G.; Lackner, G. L.; Overman, L. E. J. Org. Chem. 2015, 80, 6025.
[13]
Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Nature 2017, 545, 213.
[14]
Zhao, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 224.
[15]
Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
[16]
Cheng, W.-M.; Shang, R.; Fu, Y. ACS Catal. 2017, 7, 907.
[17]
Cheng, W.-M.; Shang, R.; Fu, M.-C.; Fu, Y. Chem. -Eur. J. 2017, 23, 2537.
[18]
Sherwood, T. C.; Li, N.; Yazdani, A. N.; Murali Dhar, T. G. J. Org. Chem. 2018, 83, 3000.
[19]
Dong, J.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Adv. Synth. Catal. 2020, 362, 2155.
[20]
Jin, S.; Geng, X.; Li, Y.; Zheng, K. Eur. J. Org. Chem. 2021, 6, 969.
[21]
Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
[22]
Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z. Org. Lett. 2018, 20, 6298.
[23]
Lyu, X.; Huang, S.; Song, H.; Liu, Y.; Wang, Q. Org. Lett. 2019, 21, 5728.
[24]
Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.
[25]
Sun, A. C.; McClain, E. J.; Beatty, J. W.; Stephenson, C. R. J. Org. Lett. 2018, 2, 3487.
[26]
Jin, J.; MacMillan, D. W. C. Angew. Chem., nt. Ed. 2015, 54, 1565.
[27]
Zhang, Y.; Teuscher, K. B.; Ji, H. Chem. Sci. 2016, 7, 2111.
[28]
Devari, S.; Shah, B. A. Chem. Commun. 2016, 52, 1490.
[29]
Zhang, L.; Zhang, G.; Li, Y.; Wang, S.; Lei, A. Chem. Commun. 2018, 54, 5744.
[30]
Liang, X.-A.; Niu, L.; Wang, S.; Liu, J.; Lei, A. Org. Lett. 2019, 21, 2441.
[31]
Huff, C. A.; Cohen, R. D.; Dykstra, K. D.; Streckfuss, E.; DiRocco, D. A.; Krska, S. W. J. Org. Chem. 2016, 81, 6980.
[32]
Liu, S.; Pan, P.; Fan, H.; Li, H.; Wang, W.; Zhang, Y. Chem. Sci. 2019, 10, 3817.
[33]
Dong, J.-Y.; Xia, Q.; Luy, X.-L.; Yan, C.-C.; Song, H.-J.; Liu, Y.-X.; Wang, Q.-M. Org. Lett. 2018, 20, 5661.
[34]
Bosset, C.; Beucher, H.; Bretel, G.; Pasquier, E.; Queguiner, L.; Henry, C.; Vos, A.; Edwards, J. P.; Meerpoel, L.; Berthelot, D. Org. Lett. 2018, 20, 6003.
[35]
Grainger, R.; Heightman, T. D.; Ley, S. V.; Lima, F.; Johnson, C. N. Chem. Sci. 2019, 10, 2264.
[36]
Wang, Z.; Ji, X.; Zhao, J.; Huang, H. Green Chem. 2019, 21, 5512.
[37]
Shao, X.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2020, 22, 7450.
[38]
Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D. M.; DiRocco, D. A.; MacMillan, D. W. C. Nature 2018, 560, 70.
[39]
Quattrini, M. C.; Fujii, S.; Yamada, K.; Fukuyama, T.; Ravelli, D.; Fagnoni, M.; Ryu, I. Chem. Commun. 2017, 53, 2335.
[40]
Li, G.-X.; Hu, X.; He, G.; Chen, G. ACS Catal. 2018, 8, 11847.
[41]
Proctor, R. S. J.; Chuentragool, P.; Colgan, A. C.; Phipps, R. J. J. Am. Chem. Soc. 2021, 143, 4928.
[42]
Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343.
[43]
Li, G.-X.; Hu, X.; He, G.; Gong, C. Chem. Sci., 2019, 10, 688.
[44]
Tang, N.; Wu, X.; Zhu, C. Chem. Sci., 2019, 10, 6915.
[45]
Deng, Z.; Li, G.-X.; He, G.; Chen, G. J. Org. Chem. 2019, 84, 15777.
[46]
Chen, H.; Fan, W.; Yuan, X.-A.; Yu, S. Nat. Commun. 2019, 10, 4743.
[47]
Li, G.-X.; Morales-Rivera, C. A.; Wang, Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[48]
Dong, J.; Yue, F.; Song, H.; Liu, Y.; Wang, Q. Chem. Commun. 2020, 56, 12652.
[49]
Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512.
[50]
Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew. Chem. Int. Ed. 2014, 53, 6198.
[51]
Matsui, J. K.; Molander, G. A. Org. Lett. 2017, 19, 950.
[52]
Yan, H.; Hou, Z.-W.; Xu, H.-C. Angew. Chem. Int. Ed. 2019, 58, 4592.
[53]
Xu, P.; Chen, P.-Y.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 14275.
[54]
Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 10626.
[55]
Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
[56]
Zhang, W.; Xiang, X.; Chen, J.; Yang, C.; Pan, Y.; Cheng, J.; Meng, Q.; Li, X. Nat. Commun. 2020 11, 638.
[57]
McCallum, T.; Barriault, L. Chem. Sci. 2016, 7, 4754.
[58]
Kim, H.; Lee, C. Angew. Chem. Int. Ed. 2012, 51, 12303.
[59]
Nuhant, P.; Oderinde, M. S.; Genovino, J.; Juneau, A.; Gagne, Y.; Allais, C.; Chinigo, G. M.; Choi, C.; Sach, N.; Bernier, W. L.; Fobian, Y. M.; Bundesmann, M. W.; Khunte, B.; Frenette, M.; Fadeyi, O. O. Angew. Chem. Int. Ed. 2017, 56, 15309.
[60]
Wang, L.; Lear, J. M.; Rafferty, S. M.; Fosu, S. C.; Nagib, D. A. Science 2018, 362, 225.
[61]
Bissonnette, N. B.; Boyd, M. J.; May, G. D.; Giroux, S.; Nuhant, P. J. Org. Chem. 2018, 83, 10933.
[62]
Wang, Z.; Dong, J.; Hao, Y.; Li, Y.; Liu, Y.; Song, H.; Wang, Q. J. Org. Chem. 2019, 84, 16245.
[63]
Dong, J.; Lyu, X.; Wang, Z.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Chem. Sci. 2019, 10, 976.
[64]
Wessig, P.; Muehling, O. Eur. J. Org. Chem. 2007, 2219.
[65]
Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87.
[66]
Liu, W.; Yang, X.; Zhou, Z.-Z.; Li, C.-J. Chem 2017, 2, 688.
[67]
McCallum, T.; Pitre, S. P.; Morin, M.; Scaiano, J. C.; Barriault, L. Chem. Sci. 2017, 8, 7412.
[68]
Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part B: Reactions and Synthesis, Springer, New York, 2001.
[69]
Wang, H.; Dai, X.-J.; Li, C.-J. Nat. Chem. 2017, 9, 374.
[70]
Dong, J.; Wang, Z.; Wang, X.; Song, H.; Liu, Y.; Wang, Q. Sci. Adv. 2019, 5, eaax9955.
[71]
Cheng, X.; Lu, Z. Chin. J. Org. Chem. 2019, 39, 3312. (in Chinese)
[71]
(程骁恺, 陆展, 有机化学, 2019, 39, 3312.)
[72]
Wang, Z.; Liu, Q.; Ji, X.; Deng, G.-J.; Huang, H. ACS Catal. 2020, 10, 154.
[73]
Peng, S.; Lin, Y.; He, W. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
[73]
(彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
[74]
Ji, X.; Liu, Q.; Wang, Z.; Wang, P.; Deng, G.; Huang, H. Green Chem. 2020, 22, 8233.
[75]
Fuse, H.; Nakao, H.; Saga, Y.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Mitsunuma, H.; Kanai, M. Chem. Sci. 2020, 11, 12206.
[76]
Wang, Z.; Ji, X.; Han, T.; Deng, G.; Huang, H. Adv. Synth. Catal. 2019, 361, 5643.
[77]
DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem., nt. Ed. 2014, 53, 4802.
[78]
Hu, X.; Li, G.-X.; He, G.; Chen, G. Org. Chem. Front. 2019, 6, 3205.
[79]
Dou, H. J. M.; Lynch, B. M. Tetrahedron Lett. 1965, 6, 897.
[80]
Xue, D.; Jia, Z.-H.; Zhao, C.-J.; Zhang, Y.-Y.; Wang, C.; Xiao, J. Chem. -Eur. J. 2014, 20, 2960.
[81]
Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
[82]
Gutiérrez-Bonet, Á.; Remeur, C.; Matsui, J. K.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 12251.
[83]
Dong, J.; Yue, F.; Xu, W.; Song, H.; Liu, Y.; Wang, Q. Green Chem. 2020, 22, 5599.
[84]
Klauck, F. J. R.; James, M. J.; Glorius, F. Angew. Chem., nt. Ed. 2017, 56, 12336.
[85]
Antonietti, F.; Mele, A.; Minisci, F.; Punta, C.; Recupero, F.; Fontana, F. J. Fluorine Chem. 2004, 125, 205.
[86]
Buquoi, J. Q.; Lear, J. M.; Gu, X.; Nagib, D. A. ACS Catal. 2019, 9, 5330.
Outlines

/