REVIEWS

Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications

  • Chaohui Cui ,
  • Yuting Liu ,
  • Ya Du
Expand
  • Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816
* Corresponding author. E-mail:

Received date: 2021-05-17

  Revised date: 2021-07-31

  Online published: 2021-08-19

Supported by

National Natural Science Foundation of China(21805134); Natural Science Foundation of Jiangsu Province(BK20191363); Science and Technology Innovation Project for Overseas Students from Nanjing City; Start-up Grant from Nanjing Tech University(39837141)

Abstract

Hexaazatriphenylene (HAT) is an electron deficient, rigid, planar, aromatic discotic molecule with three fused pyrazine rings and excellent π-π stacking ability. Due to its excellent topology and electronic properties, HAT has been exploited as structural motifs of supramolecules, covalent organic frameworks (COFs), porous hydrogen-bonded organic frameworks (HOFs), and metal organic frameworks (MOFs). HAT derivatives have been utilized in catalysis, semiconductors, monomolecular magnets, water oxidation, proton conduction, etc. In recent years, motivated by the increasing energy demand, scientists have intensively studied the energy applications of HAT derivatives. In this paper, the recent progress of HAT derivatives in the field of energy has been reviewed.

Cite this article

Chaohui Cui , Yuting Liu , Ya Du . Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications[J]. Chinese Journal of Organic Chemistry, 2021 , 41(11) : 4167 -4179 . DOI: 10.6023/cjoc202105031

References

[1]
Nasielski-Hinkens, R.; Benedek-Vamos, M.; Maetens, D.; Nasielski, J. J. Organomet. Chem. 1981, 217, 179.
[2]
(a) Deng, H. L.; Luo, X. S.; Li, Z. H.; Zhao, J. Y.; Huang, M. H. Chin. J. Org. Chem. 2021, 41, 624. (in Chinese)
[2]
(邓汉林, 罗贤升, 李志华, 赵江颖, 黄木华, 有机化学, 2021, 41, 624.)
[2]
(b) Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606. (in Chinese)
[2]
(庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
[3]
(a) Kitagawa, S.; Masaoka, S. Coord. Chem. Rev. 2003, 246, 73.
[3]
(b) Segura, J. L.; Juárez, R.; Ramos, M.; Seoane, C. Chem. Soc. Rev. 2015, 44, 6850.
[3]
(c) Yan, X.-Y.; Lin, M.-D.; Zheng, S.-T.; Zhan, T.-G.; Zhang, X.; Zhang, K.-D.; Zhao, X. Tetrahedron Lett. 2018, 59, 592.
[4]
(a) Liu, R.; von Malotki, C.; Arnold, L.; Koshino, N.; Higashimura, H.; Baumgarten, M.; Müllen, K. J. Am. Chem. Soc. 2011, 133, 10372.
[4]
(b) Ibáñez, S.; Poyatos, M.; Peris, E. Chem. Commun. 2017, 53, 3733.
[5]
Ramimoghadam, D.; Gray, E. M.; Webb, C. J. Int. J. Hydrogen Energy 2016, 41, 16944.
[6]
(a) Lee, J.-S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171.
[6]
(b) Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.
[7]
(a) Hisaki, I.; Suzuki, Y.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Angew. Chem., Int. Ed. 2018, 57, 12650.
[7]
(b) Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura, T.; Douhal, A. J. Am. Chem. Soc. 2019, 141, 2111.
[8]
(a) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[8]
(b) Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[8]
(c) Huang, Z.; Xu, Q.; Hu, X. Chin. Chem. Lett. 2020, 31, 2495.
[9]
Meng, Z.; Aykanat, A.; Mirica, K. A. Chem. Mater. 2019, 31, 819.
[10]
(a) Yuan, F.; Li, J.; Namuangruk, S.; Kungwan, N.; Guo, J.; Wang, C. Chem. Mater. 2017, 29, 3971.
[10]
(b) Tahir, N.; Wang, G.; Onyshchenko, I.; De Geyter, N.; Leus, K.; Morent, R.; Van Der Voort, P. J. Catal. 2019, 375, 242.
[10]
(c) Huang, H.; Zhao, Y.; Bai, Y.; Li, F.; Zhang, Y.; Chen, Y. Adv. Sci. 2020, 7, 2000012.
[10]
(d) Xiao, R.; Tobin, J. M.; Zha, M.; Hou, Y.-L.; He, J.; Vilela, F.; Xu, Z. J. Mater. Chem. A 2017, 5, 20180.
[10]
(e) Bai, C.; Wang, H.; Ning, F.; Fu, J.; Wei, J.; Lu, G.; Shen, Y.; Zhou, X. ChemCatChem 2020, 12, 4024.
[11]
(a) Liu, X.-Y.; Usui, T.; Hanna, J. Chem.-Eur. J. 2014, 20, 14207.
[11]
(b) Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I.-Y.; Jung, S.-M.; Choi, H.-J.; Seo, J.-M.; Bae, S.-Y.; Sohn, S.-D.; Park, N.; Oh, J. H.; Shin, H.-J.; Baek, J.-B. Nat. Commun. 2015, 6, 6486.
[12]
Gould, C. A.; Darago, L. E.; Gonzalez, M. I.; Demir, S.; Long, J. R. Angew. Chem., Int. Ed. 2017, 56, 10103.
[13]
Walczak, R.; Kurpil, B.; Savateev, A.; Heil, T.; Schmidt, J.; Qin, Q.; Antonietti, M.; Oschatz, M. Angew. Chem., Int. Ed. 2018, 57, 10765.
[14]
Kurpil, B.; Savateev, A.; Papaefthimiou, V.; Zafeiratos, S.; Heil, T.; Özenler, S.; Dontsova, D.; Antonietti, M. Appl. Catal., B 2017, 217, 622.
[15]
Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Chem. Rev. 2020, 120, 6490.
[16]
Liang, Y.; Yao, Y. Joule 2018, 2, 1690.
[17]
(a) Chen, R.; Luo, R.; Huang, Y.; Wu, F.; Li, L. Adv. Sci. 2016, 3, 1600051.
[17]
(b) Liu, J.; Zhang, J.-G.; Yang, Z.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L.; Hu, J.; Wang, C.; Xiao, J.; Xia, G.; Viswanathan, V. V.; Baskaran, S.; Sprenkle, V.; Li, X.; Shao, Y.; Schwenzer, B. Adv. Funct. Mater. 2013, 23, 929.
[18]
Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.
[19]
Zhang, C. M.; Huang, Z.; Yang, Y.; Wang, D.; He, D. N. Chin. J. Org. Chem. 2014, 34, 1347. (in Chinese)
[19]
(张春明, 黄昭, 杨扬, 王丹, 何丹农, 有机化学, 2014, 34, 1347.)
[20]
Wang, R.; Okajima, T.; Kitamura, F.; Matsumoto, N.; Thiemann, T.; Mataka, S.; Ohsaka, T. J. Phys. Chem. B 2003, 107, 9452.
[21]
Zhu, L.; Ding, G.; Xie, L.; Cao, X.; Liu, J.; Lei, X.; Ma, J. Chem. Mater. 2019, 31, 8582.
[22]
Takayuki, M.; Takayuki, K.; Toyonari, S.; Masaharu, S. Chem. Lett. 2011, 40, 750.
[23]
Peng, C.; Ning, G.-H.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.; Yu, D.; Zu, L.; Yang, J.; Ng, M.-F.; Hu, Y.-S.; Yang, Y.; Armand, M.; Loh, K. P. Nat. Energy 2017, 2, 17074.
[24]
Wang, J.; Tee, K.; Lee, Y.; Riduan, S. N.; Zhang, Y. J. Mater. Chem. A 2018, 6, 2752.
[25]
Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Chem. Commun. 2014, 50, 4788.
[26]
Wang, J.; Chen, C. S.; Zhang, Y. ACS Sustainable Chem. Eng. 2018, 6, 1772.
[27]
Zhang, Y.; Riduan, S. N.; Wang, J. Chem.-Eur. J. 2017, 23, 16419.
[28]
Li, Q.; Wang, H.; Wang, H.-g.; Si, Z.; Li, C.; Bai, J. ChemSusChem 2020, 13, 2449.
[29]
Wang, J.; Lee, Y.; Tee, K.; Riduan, S. N.; Zhang, Y. Chem. Commun. 2018, 54, 7681.
[30]
Wang, J.; En, J. C. Z.; Riduan, S. N.; Zhang, Y. Chem.-Eur. J. 2020, 26, 2581.
[31]
Xu, S.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W.; Zhuang, X.; Brunner, E.; Heine, T.; Berger, R.; Feng, X. Angew. Chem., Int. Ed. 2019, 58, 849.
[32]
Wu, M.; Zhao, Y.; Sun, B.; Sun, Z.; Li, C.; Han, Y.; Xu, L.; Ge, Z.; Ren, Y.; Zhang, M.; Zhang, Q.; Lu, Y.; Wang, W.; Ma, Y.; Chen, Y. Nano Energy 2020, 70, 104498.
[33]
(a) Du, Y.; Cui, C. H.; Li, Z; Zhang, Y.; Jiang, H.; Liu, Y.CN 113292725, 2021.
[33]
(b) Yang, Y.; Zheng, F.; Xia, G.; Lun, Z.; Chen, Q. J. Mater. Chem. A 2015, 3, 18657.
[34]
Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q. Adv. Sci. 2016, 3, 1600051.
[35]
Mao, M.; Gao, T.; Hou, S.; Wang, F.; Chen, J.; Wei, Z.; Fan, X.; Ji, X.; Ma, J.; Wang, C. Nano Lett. 2019, 19, 6665.
[36]
Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Chem. Rev. 2020, 14, 6490.
[37]
Mao, M.; Luo, C.; Pollard, T. P.; Hou, S.; Gao, T.; Fan, X.; Cui, C.; Yue, J.; Tong, Y.; Yang, G.; Deng, T.; Zhang, M.; Ma, J.; Suo, L.; Borodin, O.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 17820.
[38]
Shi, R.; Liu, L.; Lu, Y.; Wang, C.; Li, Y.; Li, L.; Yan, Z.; Chen, J. Nat. Commun. 2020, 11, 178.
[39]
Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Nat. Mater. 2017, 16, 841.
[40]
Wu, X.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T.; Bi, X.; Yuan, Y.; Qi, Y.; Surta, T. W.; Huang, W.; Neuefeind, J.; Wu, T.; Greaney, P. A.; Lu, J.; Ji, X. Nat. Energy 2019, 4, 123.
[41]
Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Angew. Chem., Int. Ed. 2020, 59, 4920.
[42]
(a) Ye, H. Y.; Li, W.; Li, W. S. Chin. J. Org. Chem. 2012, 32, 266. (in Chinese)
[42]
(叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266.)
[42]
(b) Shao, J. Y.; Zhong, Y. W. Chin. J. Org. Chem. 2021, 41, 1447. (in Chinese)
[42]
(邵将洋, 钟羽武, 有机化学, 2021, 41, 1447.)
[43]
Choudhary, S.; Gozalvez, C.; Higelin, A.; Krossing, I.; Melle- Franco, M.; Mateo-Alonso, A. Chem.-Eur. J. 2014, 20, 1525.
[44]
Zhao, D.; Zhu, Z.; Kuo, M.-Y.; Chueh, C.-C.; Jen, A. K.-Y. Angew. Chem., Int. Ed. 2016, 55, 8999.
[45]
Zhu, R.; Li, Q.-S.; Li, Z.-S. ACS Appl. Mater. Inter. 2020, 12, 38222.
[46]
Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.
[47]
Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Angew. Chem., Int. Ed. 2011, 50, 8753.
[48]
Yan, R.; Leus, K.; Hofmann, J. P.; Antonietti, M.; Oschatz, M. Nano Energy 2020, 67, 104240.
[49]
Manthiram, A.; Song, B.; Li, W. Energy Stor. Mater. 2017, 6, 125.
[50]
Jerng, S. E.; Chang, B.; Shin, H.; Kim, H.; Lee, T.; Char, K.; Choi, J. W. ACS Appl. Mater. Inter. 2020, 12, 10597.
Outlines

/