Chinese Journal of Organic Chemistry >
Synthesis and Antitumor Activity of 2,4,6-Trisubstituted Novel Quinazoline Derivatives Containing Trifluoromethyl
Received date: 2021-07-12
Revised date: 2021-08-13
Online published: 2021-08-29
Supported by
National Natural Science Foundation of China(U1904163); National Key Research Program of Proteins(2018YFE0195100); Opening Fund from State Key Laboratory of Esophageal Cancer Prevention & Treatment(K2020000X)
In order to find efficient and low toxicity antitumor drugs, a series of novel 2,4,6-trisubstituted quinazoline derivatives containing trifluoromethyl were synthesized and evaluated for their antitumor activities against human cancer cell lines (PC-3, MCF-7, Eca-109, MGC-803, HGC-27, A549, H1975) by using methyl thiazolyl tetrazolium (MTT) assay. Most of compounds exerted moderate to excellent antitumor activity against seven human cancer cells. Among them, N-(3-bromophenyl)-6-methoxy-2-((4-(trifluoromethyl)benzyl)thio)quinazolin-4-amine (16l) showed the best antitumor activity against PC-3 cancer cell line, with the IC50 values of (2.22±0.15) μmol/L, which was better than the positive control of gefitinib. At the same time, and compound 16l could dose-dependently and time-dependently induce PC-3 cells apoptosis.
Key words: trifluoromethyl; quinazoline; synthesis; antitumor activity
Zhengjie Wang , Honglin Dai , Xiaojie Si , Chao Gao , Limin Liu , Luye Zhang , Yang Zhang , Yadan Song , Peirong Zhao , Jiaxin Zheng , Yu Ke , Hongmin Liu , Qiurong Zhang . Synthesis and Antitumor Activity of 2,4,6-Trisubstituted Novel Quinazoline Derivatives Containing Trifluoromethyl[J]. Chinese Journal of Organic Chemistry, 2022 , 42(1) : 249 -256 . DOI: 10.6023/cjoc202107026
[1] | Akhtar, J.; Khan, A. A.; Ali, Z.; Haider, R. S.; Yar, M. Eur. J. Med. Chem. 2017, 125, 143. |
[2] | Elmetwally, S. A.; Saied, K. F.; Eissa, I.; Elkaeed, E. B. Bioorg. Chem. 2019, 88, 102944. |
[3] | Fouad, M. M.; El-Bendary, E. R.; Suddek, G. M.; Shehata, I. A.; El-Kerdawy, M. M. Bioorg. Chem. 2018, 81, 587. |
[4] | Arafa, R. K.; Nour, M. S.; El-Sayed, N. A. Eur. J. Med. Chem. 2013, 69, 498. |
[5] | Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Eur. J. Med. Chem. 2017, 142, 179. |
[6] | Rojas Aguirre, Y.; Hernández Luis, F.; Mendoza Martínez, C.; Sotomayor, C. P.; Aguilar, L. F.; Villena, F.; Castillo, I.; Hernández, D. J.; Suwalsky, M. Biochim. Biophys. Acta 2012, 1818, 738. |
[7] | Ji, Q.; Yang, D.; Wang, X.; Chen, C.; Deng, Q.; Ge, Z.; Yuan, L.; Yang, X.; Liao, F. Bioorg. Med. Chem. Lett. 2014, 22, 3405. |
[8] | Selvam, T. P.; Sivakumar, A.; Prabhu, P. P. J. Pharm. BioAllied Sci. 2014, 6, 278. |
[9] | Rakesh, K. P.; Manukumar, H. M.; Gowda, D. C. Bioorg. Med. Chem. Lett. 2015, 25, 1072. |
[10] | Hu, J.; Zhang, Y.; Dong, L.; Wang, Z.; Chen, L.; Liang, D.; Shi, D.; Shan, X.; Liang, G. Chem. Biol. Drug Des. 2015, 85, 672. |
[11] | El-Azab, A. S.; Eltahir, K. E. Bioorg. Med. Chem. Lett. 2012, 22, 327. |
[12] | Magyar, K.; Deres, L.; Eros, K.; Bruszt, K.; Seress, L.; Hamar, J.; Hideg, K.; Balogh, A.; Gallyas, F., Jr.; Sumegi, B.; Toth, K.; Halmosi, R Biochim. Biophys. Acta 2014, 1842, 935. |
[13] | Malamas, M. S.; Millen, J. J. Med. Chem. 1991, 34, 1492. |
[14] | Galvez, J.; Polo, S.; Insuasty, B.; Gutierrez, M.; Caceres, D.; Alzate-Morales, J. H.; De-la-Torre, P.; Quiroga, J. Comput. Biol. Chem. 2018, 74, 218. |
[15] | Li, E. D.; Lin, Q.; Meng, Y. Q.; Zhang, L. Y.; Song, P. P.; Li, N.; Xin, J. C.; Yang, P.; Bao, C. N.; Zhang, D. Q.; Zhang, Y.; Wang, J. K.; Zhang, Q. R.; Liu, H. M. Eur. J. Med. Chem. 2019, 172, 36. |
[16] | Mehndiratta, S.; Sapra, S.; Singh, G.; Singh, M.; Nepali, K. Recent Pat. Anti-Cancer Drug Discovery 2016, 11, 2. |
[17] | Ravez, S.; Castillo-Aguilera, O.; Depreux, P.; Goossens, L. Expert. Opin. Ther. Pat. 2015, 25, 789. |
[18] | Hei, Y. Y.; Shen, Y.; Wang, J.; Zhang, H.; Zhao, H. Y.; Xin, M.; Cao, Y. X.; Li, Y.; Zhang, S. Q. Bioorg. Med. Chem. 2018, 26, 2173. |
[19] | Teng, Y.; Li, X.; Ren, S. Eur. J. Med. Chem. 2020, 208. |
[20] | Isanbor, C.; O’Hagan, D. J. Fluorine Chem. 2006, 127, 303. |
[21] | Pissot, S. C.; Simic, O.; Renatus, M. J. Med. Chem. 2020, 63, 14576. |
[22] | Quancard, J.; Simic, O.; Pissot, S. C. J. Med. Chem. 2020, 63, 14594. |
[23] | Mishra, S. K.; Suryaprakash, N. Chem. Phys. Lett. 2015, 639, 254. |
[24] | Wang, C.; Li, S.; Meng, Q.; Sun, X.; Li, H.; Shu, X.; Sun, H.; Liu, K.; Liu, Z.; Ma, X. Biorg. Med. Chem. 2018, 26, 4179. |
[25] | Jian, Y.; Forbes, H. E.; Hulpia, F.; Risseeuw, M. D. P.; Caljon, G.; Munier-Lehmann, H.; Boshoff, H. I. M.; Van Calenbergh, S. J. Med. Chem. 2021, 64, 440. |
[26] | Qhobosheane, M. A.; Petzer, A.; Petzer, J. P.; Legoabe, L. J. Bioorg. Med. Chem. 2018, 26, 5531. |
[27] | Shi, L.; Wu, T. T.; Wang, Z.; Xue, J. Y.; Xu, Y. G. Bioorg. Med. Chem. 2014, 22, 4735. |
/
〈 |
|
〉 |