ARTICLES

Iron(0)-Mediated Henry-Type Reaction of Bromonitromethane with Aldehydes for the Efficient Synthesis of 2-Nitro-alkan-1-ols

  • Sixuan Zhang ,
  • Xiangrui Li ,
  • Wenxin Li ,
  • Weidong Rao ,
  • Danhua Ge ,
  • Zhiliang Shen ,
  • Xueqiang Chu
Expand
  • a Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816
    b Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 21003
† These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2021-07-23

  Revised date: 2021-08-27

  Online published: 2021-08-29

Supported by

Nanjing Tech University(39837146); National Natural Science Foundation of China(22001121); Natural Science Foundation of Jiangsu Province(BK20180690)

Abstract

The Henry-type reaction of bromonitromethane with various aldehydes for the efficient synthesis of 2-nitro-alkan- 1-ols by using inexpensive and commercial iron powder as reaction mediator was developed. The reaction proceeded efficiently in the presence of PbCl2 and tetrabutylammonium hydrogen sulfate (TBAHS) to produce the desired products in moderate to good yield with wide functional group tolerance.

Cite this article

Sixuan Zhang , Xiangrui Li , Wenxin Li , Weidong Rao , Danhua Ge , Zhiliang Shen , Xueqiang Chu . Iron(0)-Mediated Henry-Type Reaction of Bromonitromethane with Aldehydes for the Efficient Synthesis of 2-Nitro-alkan-1-ols[J]. Chinese Journal of Organic Chemistry, 2022 , 42(1) : 235 -241 . DOI: 10.6023/cjoc202107048

References

[1]
(a) Ono, N. In The Nitro Group in Organic Synthesis, Wiley-VCH, New York, 2001, p. 30.
[1]
(b) Norman, B. H.; Morris, M. L. Tetrahedron Lett. 1992, 33, 6803.
[1]
(c) Kawabata, T.; Kiryu, Y.; Sugiure, Y.; Fuji, K. Tetrahedron Lett. 1993, 34, 5127.
[1]
(d) Sasai, H.; Kim, W.-S.; Suzuki, T.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 6123.
[1]
(e) Corey, E. J.; Zhang, F.-Y. Angew. Chem. Int. Ed. 1999, 38, 1931.
[1]
(f) Grembecka, J.; Kafarski, P. Mini Rev. Med. Chem. 2001, 1, 133.
[2]
Henry, L. Bull. Soc. Chim. Fr. 1895, 13, 999.
[3]
(a) Rosini, G.; Ballini, R. Synthesis 1988, 833.
[3]
(b) Shvekhgeimer, M. A. Russ. Chem. Rev. 1998, 67, 35.
[3]
(c) Luzzio, F. A. Tetrahedron 2001, 57, 915.
[4]
(a) Concellon, J. M.; Rodriguez-Solla, H.; Concellon, C.; Garcia-Granda, S.; Diaz, M. R. Org. Lett. 2006, 8, 5979.
[4]
(b) Alcaide, B.; Almendros, P.; Luna, A.; Torres, M. R. Org. Biomol. Chem. 2008, 6, 1635.
[4]
(c) Blay, G.; Hernandez-Olmos, V.; Pedro, J. R. Chem. Commun. 2008, 4840.
[4]
(d) Leighty, M. W.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 15233.
[4]
(e) Mao, P.; Yang, L.; Xiao, Y.; Yuan, J.; Mai, W.; Gao, J.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 443.
[4]
(f) Hu, Z.; Jiang, G.; Zhu, Z. Gong, B.; Xie, Z.; Le, Z. Chin. J. Org. Chem. 2021, 41, 325.
[5]
Concellon, J. M.; Rodriguez-Solla, H.; Concellon, C. J. Org. Chem. 2006, 71, 7919.
[6]
(a) Soengas, R. G.; Estévez, A. M. Eur. J. Org. Chem. 2010, 5190.
[6]
(b) Soengas, R. G.; Estévez, A. M. Synlett 2010, 2625.
[6]
(c) Soengas, R. G.; Estévez, A. M. Tetrahedron Lett. 2012, 53, 570.
[7]
Soengas, R. G.; Silva, A. M. S. Synlett 2012, 873.
[8]
Mahasneh, A. S. Z. Naturforsch. 2005, 60b, 416.
[9]
(a) Liu, Y.; Lu, Y.; Prashad, M.; Repic, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347, 217.
[9]
(b) Gao, G.; Tao, Y.; Jiang, J. Green Chem. 2008, 10, 439.
[9]
(c) Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B. C. Chem. Commun. 2012, 48, 7982.
[9]
(d) Liu, X.-Y.; Cheng, B.-Q.; Guo, Y.-C.; Chu, X.-Q.; Rao, W.; Loh, T.-P.; Shen, Z.-L. Org. Chem. Front. 2019, 6, 1581.
[9]
(e) Liu, X.-Y.; Li, X.-R.; Zhang, C.; Chu, X.-Q.; Rao, W.; Loh, T.-P.; Shen, Z.-L. Org. Lett. 2019, 21, 5873.
[9]
(f) Chan, T. C.; Lau, C. P.; Chan, T. H. Tetrahedron Lett. 2004, 45, 4189.
[10]
(a) Blümke, T. D.; Chen, Y.-H.; Peng, Z.; Knochel, P. Nat. Chem. 2010, 2, 313.
[10]
(b) Chen, B.-Z.; Wang, C.-X.; Jing, Z.-H.; Chu, X.-Q.; Loh, T.-P.; Shen, Z.-L. Org. Chem. Front. 2019, 6, 313.
[11]
(a) Blümke, T. D.; Klatt, T.; Koszinowski, K.; Knochel, P. Angew. Chem. Int. Ed. 2012, 51, 9926.
[11]
(b) Takai, K.; Ikawa, Y. Org. Lett. 2002, 4, 1727.
[11]
(c) Yun, J.-J.; Zhi, M.-L.; Shi, W.-X.; Chu, X.-Q.; Shen, Z.-L.; Loh, T.-P. Adv. Synth. Catal. 2018, 360, 2632.
[11]
(d) Shen, L.; Zhao, K.; Doitomi, K.; Ganguly, R.; Li, Y.-X.; Shen, Z.-L.; Hirao, H.; Loh, T.-P. J. Am. Chem. Soc. 2017, 139, 13570.
[12]
(a) Ollevier, T. Org. Biomol. Chem. 2013, 11, 2740.
[12]
(b) Wu, Z.; Feng, X.-X.; Wang, Q.-D.; Yun, J.-J.; Rao, W.; Yang, J.-M.; Shen, Z.-L. Chin. Chem. Lett. 2020, 31, 1297.
[13]
(a) Chen, C.; Liu, P.; Luo, M.; Zeng, X. ACS Catal. 2018, 8, 5864.
[13]
(b) Li, Y.; Deng, G.; Zeng, X. Organometallics 2016, 35, 747.
[13]
(c) Yun, J.-J.; Liu, X.-Y.; Deng, W.; Chu, X.-Q.; Shen, Z.-L.; Loh, T.-P. J. Org. Chem. 2018, 83, 10898.
[14]
(a) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 3317.
[14]
(b) Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.
[14]
(c) Xiong, H.; Ramkumar, N.; Chiou, M.-F.; Jian, W.; Li, Y.; Su, J.-H.; Zhang, X.; Bao, H. Nat. Commun. 2019, 10, 122.
[14]
(d) Wei, R.; Xiong, H.; Ye, C.; Li, Y.; Bao, H. Org. Lett. 2020, 22, 3195.
[14]
(e) Deng, W.; Ye, C.; Li, Y.; Li, D.; Bao, H. Org. Lett. 2019, 21, 261.
[14]
(f) He, Z.; Fan, M.; Xu, J.; Hu, Y.; Wang, L.; Wu, X.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2019, 39, 3438.
[15]
(a) Takai, K.; Kakiuchi, T.; Utimoto, K. J. Org. Chem. 1994, 59, 2671.
[15]
(b) Cheng, B.-Q.; Zhao, S.-W.; Song, X.-D.; Chu, X.-Q.; Rao, W.; Loh, T.-P.; Shen, Z.-L. J. Org. Chem. 2019, 84, 5348.
[16]
(a) Cheng, B.-Q.; Zhang, S.-X.; Cui, Y.-Y.; Chu, X.-Q.; Rao, W.; Xu, H.; Han, G.-Z.; Shen, Z.-L. Org. Lett. 2020, 22, 5456.
[16]
(b) Chu, X.-Q.; Cheng, B.-Q.; Zhang, Y.-W.; Ge, D.; Shen, Z.-L.; Loh, T.-P. Chem. Commun. 2018, 54, 2615.
[16]
(c) Wang, P.; Chen, B.-Z.; Guo, Y.-C.; Rao, W.; Shen, Z.-L. Tetrahedron Lett. 2019, 60, 151288.
[16]
(d) Wu, L.-H.; Zhao, K.; Shen, Z.-L.; Loh, T.-P. Org. Chem. Front. 2017, 4, 1872.
[16]
(e) Liu, B.; Xu, X.; Huang, L.; Feng, H. Chin. J. Org. Chem. 2020, 40, 1290.
[16]
(f) Huang, S.; Nie, Y.; Yang, J.; Zheng, Z.; Cao, J.; Xu, Z.; Xu, L. Chin. J. Org. Chem. 2020, 40, 2018.
[17]
Wu, Z.; Feng, X.-X.; Wang, Q.-D.; Liu, X.-Y.; Rao, W.; Yang, J.-M.; Shen, Z.-L. Chin. Chem. Lett. 2020, 31, 391.
[18]
(a) Chen, B.-Z.; Zhi, M.-L.; Wang, C.-X.; Chu, X.-Q.; Shen, Z.-L.; Loh, T.-P. Org. Lett. 2018, 20, 1902.
[18]
(b) Liu, X.-Y.; Cheng, B.-Q.; Guo, Y.-C.; Chu, X.-Q.; Li, Y.-X.; Loh, T.-P.; Shen, Z.-L. Adv. Synth. Catal. 2019, 361, 542.
[19]
(a) Tay, N. E. S.; Chen, W.; Levens, A.; Pistritto, V. A.; Huang, Z.; Wu, Z.; Li, Z.; Nicewicz, D. A. Nat. Catal. 2020, 3, 734.
[19]
(b) Bhattacharyya, A.; Kavitha, C. V.; Ghorai, M. K.; J. Org. Chem. 2016, 81, 643.
[19]
(c) Kirihara, M.; Osugi, R.; Saito, K.; Adachi, K.; Yamazaki, K.; Matsushima, R.; Kimura, Y. J. Org. Chem. 2019, 84, 8330.
Outlines

/