REVIEWS

Recent Advances in the Synthesis of Ynamides

  • Yongli Zhao ,
  • Yongliang Tu ,
  • Mingzhong Cai ,
  • Junfeng Zhao
Expand
  • a College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022
    b School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436
* Corresponding author. E-mail:

Online published: 2021-09-08

Supported by

National Natural Science Foundation of China(21778025); National Natural Science Foundation of China(91853114)

Abstract

Ynamides are a class of special ynamines bearing an electron-withdrawing group on the nitrogen atom. The electron-withdrawing group endows ynamides an optimal balance between the stability and activity, and thus enabling ynamides to be versatile synthons widely used in organic synthetic chemistry. The ynamide chemistry has witnessed a rapid development over the past two decades. As a consequence, its synthetic methods have attracted widespread attention. In this context, the recent advances in the synthesis of ynamides are reviewed herein. According to the structure of the main starting materials, the contents are classified as the synthesis with haloenamides, alkynes or its derivatives, and dihalo-substituted alkenes. The representative mechanisms are also discussed.

Cite this article

Yongli Zhao , Yongliang Tu , Mingzhong Cai , Junfeng Zhao . Recent Advances in the Synthesis of Ynamides[J]. Chinese Journal of Organic Chemistry, 2022 , 42(1) : 85 -99 . DOI: 10.6023/cjoc202107051

References

[1]
Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575.
[2]
Zaugg, H.; Swett, L.; Stone, G. J. Org. Chem. 1958, 23, 1389.
[3]
(a) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[3]
(b) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., nt. Ed. 2010, 49, 2840.
[4]
(a) Lynch, C. C.; Sripada, A.; Wolf, C. Chem. Soc. Rev. 2020, 49, 8543.
[4]
(b) Luo, J.; Chen, G.-S.; Chen, S.-J.; Yu, J.-S.; Li, Z.-D.; Liu, Y.-L. ACS Catal. 2020, 10, 13978.
[4]
(c) Li, X.; Jiang, M.; Zhan, T.; Cao, W.; Feng, X. Chem Asian J. 2020, 15, 1953.
[4]
(d) Ito, T.; Harada, S.; Homma, H.; Takenaka, H.; Hirose, S.; Nemoto, T. J. Am. Chem. Soc. 2021, 143, 604.
[4]
(e) Li, X.; Zeng, H.; Lin, L.; Feng, X. Org. lett. 2021, 23, 2954.
[4]
(f) Zhu, B.-H.; Zhang, Y.-Q.; Xu, H.-J.; Li, L.; Deng, G.-C.; Qian, P.-C.; Deng, C.; Ye, L.-W. ACS Catal. 2021, 11, 1706.
[5]
(a) Zhou, B.; Tan, T.-D.; Zhu, X.-Q.; Shang, M.; Ye, L.-W. ACS Catal. 2019, 9, 6393.
[5]
(b) Li, X.; Sun, Y.; Zhang, L.; Peng, B. Chin. J. Org. Chem. 2016, 36, 2530. (in Chinese)
[5]
(李晓锦, 孙艳, 张磊, 彭勃, 有机化学, 2016, 36, 2530.)
[5]
(c) Debrauwer, V.; Turlik, A.; Rummler, L.; Prescimone, A.; Blanchard, N.; Houk, K. N.; Bizet, V. J. Am. Chem. Soc. 2020, 142, 11153.
[5]
(d) An, D.; Zhang, W.; Pan, B.; Zhao, Y. Eur. J. Org. Chem. 2020, 2021, 314.
[5]
(e) Chen, Z.; Nie, X. D.; Sun, J. T.; Yang, A. M.; Wei, B. G. Org. Biomol. Chem. 2021, 19, 2492.
[5]
(f) Gao, E.; Peng, C.; Zhang, J.; Wang, X. N.; Chang, J. Org. Biomol. Chem. 2021, 19, 2182.
[5]
(g) Nie, X. D.; Han, X. L.; Sun, J. T.; Si, C. M.; Wei, B. G.; Lin, G. Q. J. Org. Chem. 2021, 86, 3433.
[5]
(h) Sarathkumar, S.; Kavala, V.; Yao, C. F. Org. lett. 2021, 23, 1960.
[6]
(a) Wang, X. N.; Yeom, H. S.; Fang, L. C.; He, S.; Ma, Z. X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
[6]
(b) Pan, F.; Shu, C.; Ye, L. W. Org. Biomol. Chem. 2016, 14, 9456.
[6]
(c) Duret, G.; Le Fouler, V.; Bisseret, P.; Bizet, V.; Blanchard, N. Eur. J. Org. Chem. 2017, 6816.
[6]
(d) Zhou, X.; Liang, Z.; Wang, X.-N. Chin. J. Org. Chem. 2021, 41, 1288. (in Chinese)
[6]
(周欣悦, 梁宗显, 王晓娜, 有机化学, 2021, 41, 1288.)
[6]
(e) Ye, L.-W.; Li, L.; Luo, W.-F. Synlett 2021, 32, 1302.
[6]
(f) Chen, Y. B.; Qian, P. C.; Ye, L. W. Chem. Soc. Rev. 2020, 49, 8897.
[6]
(g) Liao, Y.; Zhu, L.; Yu, Y.; Chen, G.; Huang, X. Chin. J. Org. Chem. 2017, 37, 2785. (in Chinese)
[6]
(廖云, 朱磊, 俞颖华, 陈贵, 黄学良, 有机化学, 2017, 37, 2785.)
[6]
(h) Zhu, C.; Feng, J.; Zhang, J. Chin. J. Org. Chem. 2017, 37, 1165. (in Chinese)
[6]
(朱超泽, 冯见君, 张俊良, 有机化学, 2017, 37, 1165.)
[6]
(i) Liu, X.; Liu, X.; Ye, L. Chin. J. Org. Chem. 2021, 41, 1207. (in Chinese)
[6]
(刘晓涛, 刘鑫, 叶龙武, 有机化学, 2021, 41, 1207.)
[7]
Hu, Y. C.; Zhao, Y.; Wan, B.; Chen, Q. A. Chem. Soc. Rev. 2021, 50, 2582.
[8]
(a) Evano, G.; Michelet, B.; Zhang, C. C. R. Chim. 2017, 20, 648.
[8]
(b) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 8483.
[8]
(c) Hong, F. L.; Ye, L. W. Acc. Chem. Res. 2020, 53, 2003.
[9]
(a) Mahe, C.; Cariou, K. Adv. Synth. Catal. 2020, 362, 4820.
[9]
(b) Tan, T. D.; Wang, Z. S.; Qian, P. C.; Ye, L. W. Small Method 2020, 5, 2000673.
[9]
(c) Deng, Y.; Zhang, J.; Bankhead, B.; Markham, J. P.; Zeller, M. Chem. Commun. 2021, 57, 5254.
[9]
(d) Zeng, L.; Jin, J.; He, J.; Cui, S. Chem. Commun. 2021, 57, 6792.
[9]
(e) Zhou, G.; Su, J.; Shang, T.; Wang, X.; Bai, Y.; Yuan, Z.; Zhu, G. Org. Chem. Front. 2021, 8, 4473.
[10]
(a) Evano, G.; Jouvin, K.; Coste, A. Synthesis 2012, 45, 17.
[10]
(b) Cook, A. M.; Wolf, C. Tetrahedron Lett. 2015, 56, 2377.
[10]
(c) Evano, G.; Blanchard, N.; Compain, G.; Coste, A.; Demmer, C. S.; Gati, W.; Guissart, C.; Heimburger, J.; Henry, N.; Jouvin, K.; Karthikeyan, G.; Laouiti, A.; Lecomte, M.; Martin-Mingot, A.; Métayer, B.; Michelet, B.; Nitelet, A.; Theunissen, C.; Thibaudeau, S.; Wang, J.; Zarca, M.; Zhang, C. Chem. Lett. 2016, 45, 574.
[10]
(d) Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas, C. J.; Hsung, R. P. Tetrahedron 2001, 57, 459.
[10]
(e) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. Synlett 2003, 1379.
[10]
(f) Zhao, L.; Yang, H.; Li, R.; Tao, Y.; Guo, X. F.; Anderson, E. A.; Whiting, A.; Wu, N. J. Org. Chem. 2021, 86, 1938.
[11]
Janousek, Z.; Collard, J.; Viehe, H. G., Angew. Chem., nt. Ed. 1972, 11, 917.
[12]
Joshi, R. V.; Xu, Z.-Q.; Ksebati, M. B.; Kessel, D.; Corbett, T. H.; Drach, J. C.; Zemlicka, J. J. Chem. Soc., Perkin Trans. 1 1994, 1089.
[13]
Brückner, D. Tetrahedron 2006, 62, 3809.
[14]
Rodríguez, D.; Castedo, L, Saá, C. Synlett 2004, 783.
[15]
Rodríguez, D.; Martínez-Esperón, M.; Castedo, L, Saá, C. Synlett 2007, 1963.
[16]
Mansfield, S. J.; Campbell, C. D.; Jones, M. W.; Anderson, E. A. Chem. Commun. 2015, 51, 3316.
[17]
Mansfield, S. J.; Smith, R. C.; Yong, J. R. J.; Garry, O. L.; Anderson, E. A. Org. Lett. 2019, 21, 2918.
[18]
Couty, S.; Barbazanges, M.; Meyer, C.; Cossy, J. Synlett 2005, 905.
[19]
Murch, P.; Williamson, B. L.; Stang, P. J. Synthesis 1994, 1255.
[20]
(a) Witulski, B.; Stengel, T. Angew. Chem., nt. Ed. 1998, 37, 489.
[20]
(b) Witulski, B.; Gossmann, M. Synlett 2000, 1793.
[21]
(a) Witulski, B.; Schweikert, T.; Schollmeyer, D.; Nemkovich, N. A. Chem. Commun. 2010, 46, 2953.
[21]
(b) Witulski, B.; Lumtscher, J.; Bergsträßer, U. Synlett 2003, 708.
[21]
(c) Witulski, B.; Stengel, T. Angew. Chem., nt. Ed. 1999, 38, 242.
[22]
(a) Rainier, J. D.; Imbriglio, J. E. J. Org. Chem. 2000, 65, 7272.
[22]
(b) Rainier, J. D.; Imbriglio, J. E. Org. Lett. 1999, 1, 2037.
[23]
Feldman, K. S.; Bruendl, M. M.; Schildknegt, K.; Bohnstedt, A. C. J. Org. Chem. 1996, 61, 5440.
[24]
Witulski, B.; Gößmann, M. Chem. Commun. 1999, 1879.
[25]
Souto, J. A.; Becker, P.; Iglesias, A.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 15505.
[26]
Xiang, D.; Li, H.; Zhang, L.; Zhang, Y.; Zhang, Q.; Li, D. Asian J. Org. Chem. 2019, 8, 537.
[27]
Yudasaka, M.; Shimbo, D.; Maruyama, T.; Tada, N.; Itoh, A. Org. Lett. 2019, 21, 1098.
[28]
Takai, R.; Shimbo, D.; Tada, N.; Itoh, A. J. Org. Chem. 2021, 86, 4699.
[29]
Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.; Huang, J.; Kurtz, K. C.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003, 125, 2368.
[30]
(a) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C.; Vera, E. L. Org. Lett. 2004, 6, 1151.
[30]
(b) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org. Chem. 2006, 71, 4170.
[31]
Hsung., R. P. Org. Synth. 2007, 84, 359.
[32]
Zhang, X.; Li, H.; You, L.; Tang, Y.; Hsung, R. P. Adv. Synth. Catal. 2006, 348, 2437.
[33]
Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011.
[34]
Kohnen, A. L. Org. Synth. 2007, 84, 88.
[35]
Harkat, H.; Borghèse, S.; Nigris, M. D.; Kiselev, S.; Bénéteau, V.; Pale, P. Adv. Synth. Catal. 2014, 356, 3842.
[36]
Yao, B.; Liang, Z.; Niu, T.; Zhang, Y. J. Org. Chem. 2009, 74, 4630.
[37]
Yang, Y.; Meng, X.; Zhu, B.; Jia, Y.; Cao, X.; Huang, S. Eur. J. Org. Chem. 2019, 1166.
[38]
DeKorver, K. A.; Walton, M. C.; North, T. D.; Hsung, R. P. Org. Lett. 2011, 13, 4862.
[39]
Chen, X. Y.; Wang, L.; Frings, M.; Bolm, C. Org. Lett. 2014, 16, 3796.
[40]
Anselmi, E.; Le, T. N.; Bouvet, S.; Diter, P.; Pégot, B.; Magnier, E. Eur. J. Org. Chem. 2016, 4423.
[41]
(a) Hirano, S.; Tanaka, R.; Urabe, H.; Sato, F. Org. Lett. 2004, 6, 727.
[41]
(b) Hirano, S.; Fukudome, Y.; Tanaka, R.; Sato, F.; Urabe, H. Tetrahedron 2006, 62, 3896.
[42]
(a) Amanda, L. Kohnen, J. R. D. and Rick, L. Danheiser, R. L. Org. Synth. 2007, 84, 88.
[42]
(b) Wang, Y. P.; Danheiser, R. L. Tetrahedron Lett. 2011, 52, 2111.
[43]
Riddell, N.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 3681.
[44]
Betou, M.; Sallustrau, A.; Toupet, L.; Trolez, Y. Tetrahedron Lett. 2015, 56, 4627.
[45]
Jia, W.; Jiao, N. Org. Lett. 2010, 12, 2000.
[46]
Priebbenow, D. L.; Becker, P.; Bolm, C. Org. Lett. 2013, 15, 6155.
[47]
Jouvin, K.; Couty, F.; Evano, G. Org. Lett. 2010, 12, 3272.
[48]
Jouvin, K.; Heimburger, J.; Evano, G. Chem. Sci. 2012, 3, 756.
[49]
Sueda, T.; Oshima, A.; Teno, N. Org. Lett. 2011, 13, 3996.
[50]
Balsamo, A.; Macchia, B.; Macchia, F.; Rossello, A.; Domiano, P. Tetrahedron Lett. 1985, 26, 4141.
[51]
Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
[52]
Jin, X.; Yamaguchi, K.; Mizuno, N. Chem. Commun. 2012, 48, 4974.
[53]
Tong, X.; Ni, G.; Deng, X.; Xia, C. Synlett 2012, 23, 2497.
[54]
Beveridge, R. E.; Batey, R. A. Org. Lett. 2012, 14, 540.
[55]
Wang, L.; Huang, H.; Priebbenow, D. L.; Pan, F. F.; Bolm, C. Angew. Chem., nt. Ed. 2013, 52, 3478.
[56]
(a) Evano, G.; Lecomte, M.; Thilmany, P.; Theunissen, C. Synthesis 2017, 49, 3183.
[56]
(b) Guissart, C.; Luhmer, M.; Evano, G. Tetrahedron 2018, 74, 6727.
[57]
Coste, A.; Karthikeyan, G.; Couty, F.; Evano, G. Angew. Chem., nt. Ed. 2009, 48, 4381.
[58]
Coste, A.; Couty, F.; Evano, G. Org. Lett. 2009, 11, 4454.
[59]
Das, B.; Salvanna, N.; Reddy, G. C.; Balasubramanyam, P. Tetrahedron Lett. 2011, 52, 6497.
[60]
Yang, Y.; Zhang, X.; Liang, Y. Tetrahedron Lett. 2012, 53, 6557.
[61]
Xue, J.; Luo, M.-T.; Wen, Y.-L.; Ye, M.; Liu, L.-X.; Chen, Z.-W. Synthesis 2014, 46, 3191.
[62]
Mansfield, S. J.; Christensen, K. E.; Thompson, A. L.; Ma, K.; Jones, M. W.; Mekareeya, A.; Anderson, E. A. Angew. Chem., nt. Ed. 2017, 56, 14428.
[63]
Hu, L.; Xu, S.; Zhao, Z.; Yang, Y.; Peng, Z.; Yang, M.; Wang, C.; Zhao, J. J. Am. Chem. Soc. 2016, 138, 13135.
[64]
(a) Yang, J.; Wang, C.; Xu, S.; Zhao, J. Angew. Chem., nt. Ed. 2019, 58, 1382.
[64]
(b) Yang, J.; Wang, C.; Yao, C.; Chen, C.; Hu, Y.; He, G.; Zhao, J. J. Org. Chem. 2020, 85, 1484.
[65]
Yao, C.; Yang, J.; Lu, X.; Zhang, S.; Zhao, J. Org. lett. 2020, 22, 6628.
[66]
(a) Yang, M.; Wang, X.; Zhao, J. ACS Catal. 2020, 10, 5230.
[66]
(b) Wang, X.; Yang, Y.; Zhao, Y.; Wang, S.; Hu, W.; Li, J.; Wang, Z.; Yang, F.; Zhao, J. J. Org. Chem. 2020, 85, 6188.
[67]
(a) Xu, S.; Zhao, Z.; Zhao, J. Chin. Chem. Lett. 2018, 29, 1009.
[67]
(b) Liu, T.; Xu, S.; Zhao, J. Chin. J. Org. Chem. 2021, 41, 873. (in Chinese)
[67]
(刘涛, 许泗林, 赵军锋, 有机化学, 2021, 41, 873.)
[67]
(a) Tu, Y.; Zeng, X.; Wang, H.; Zhao, J. Org. Lett. 2018, 20, 280.
[67]
(b) Zeng, X.; Tu, Y.; Zhang, Z.; You, C.; Wu, J.; Ye, Z.; Zhao, J. J. Org. Chem. 2019, 84, 4458.
Outlines

/