REVIEWS

Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions

  • Yaoyao Zhang ,
  • Lijie Zhou ,
  • Biao Han ,
  • Weishuang Li ,
  • Bojie Li ,
  • Lei Zhu
Expand
  • a School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan, Hubei 432000
    b School of Materials Science and Engineering, Hubei University, Wuhan 430062
    c Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074

Received date: 2021-07-31

  Revised date: 2021-09-11

  Online published: 2021-09-27

Supported by

National Natural Science Foundation of China(21774029); National Natural Science Foundation of China(22108065); Natural Science Foundation of Hubei Province(2019CFB354); Young and Middle-Aged Science and Technology Innovation Team Project in Higher Education Institutions of Hubei Province(T201816); Natural Science Foundation of Xiaogan City(XGKJ2020010053); Natural Science Foundation of Xiaogan City(XGKJ2021010009)

Abstract

Chitosan is obtained by deacetylation of chitin and is a kind of abundant renewable biomass resource. The molecular structure of chitosan contains a large number of hydroxyl and amino groups, which have strong bonding ability with metal nanoparticles or metal ions. Thus it has been widely used to support various metal particles for the preparation of catalysts. In recent years, chitosan supported copper catalyst has been successfully applied in various types of organic reactions. It has the advantages of high reactivity, good selectivity, easy separation, and can also be reused for many times, which reduces the reaction cost and improves the actual industrial application value. Therefore, based on the preparation of different types of chitosan supported copper catalysts, various types of organic reactions are reviewed, mainly involving the constructions of C—C bond and C—X bond, click chemistry and oxidation/reduction reactions. It will promote the application of chitosan and its derivatives-supported catalysts in the future.

Cite this article

Yaoyao Zhang , Lijie Zhou , Biao Han , Weishuang Li , Bojie Li , Lei Zhu . Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions[J]. Chinese Journal of Organic Chemistry, 2022 , 42(1) : 33 -53 . DOI: 10.6023/cjoc202107066

References

[1]
Anamika, R. P.; Upasana, S. S.; Munira, M.; Chintan, B. J. Polym. Res. 2017, 24, 1.
[2]
Munawar, A. M.; Jaweria, T. M. S.; Kishor, M. W.; Ellen, K. W. Pharmaceutics 2017, 9, 53.
[3]
Mohammed, A. LWT-Food Sci. Technol. 2010, 43, 837.
[4]
Prashanth, K. V. H.; Tharanathan, R. N. Trends Food Sci. Technol. 2007, 18, 117.
[5]
Choi, C.; Nam, J. P.; Nah, J. W. J. Ind. Eng. Chem. 2016, 33, 1.
[6]
Alicia, A.; Naimah, Z.; Ezeddine, H.; Brahim, H.; Fabien, B.; Damien, O.; Francois, C.; Florence, F.; Olivier, H. Molecules 2019, 24, 3009.
[7]
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Int. J. Mol. Sci. 2020, 21, 487.
[8]
Pakdel, P. M.; Peighambardoust, S. J. Carbohydr. Polym. 2018, 201, 264.
[9]
Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chem. Rev. 2004, 104, 6017.
[10]
Mourya, V. K.; Inamdar, N. N. React. Funct. Polym. 2008, 68, 1013.
[11]
Jayakumar, R.; Prabaharan, M.; Reis, R. L.; Mano, J. F. Carbohydr. Polym. 2005, 62, 142.
[12]
Guo, Z.; Xing, R.; Liu, S.; Zhong, Z.; Ji, X.; Wang, L.; Li, P. Carbohydr. Res. 2007, 342, 1329.
[13]
Shepherd, R.; Reader, S.; Falshaw, A. Glycoconjugate J. 1997, 14, 535.
[14]
Ren, L.; Yan, X.; Zhou, J.; Tong, J.; Su, X. Int. J. Biol. Macromol. 2017, 105, 1636.
[15]
Huang, H.; Yuan, Q.; Yang, X. Colloids Surf., B 2004, 39, 31.
[16]
Ahmed, T. A.; Aljaeid, B. M. Drug Des., Dev. Ther. 2016, 10, 483.
[17]
Hussein, M. H. M.; El-Hady, M. F.; Sayed, W. M.; Hefni, H. Polym. Sci., Ser. A 2012, 54, 113.
[18]
Pereira, F. S.; Lanfredi, S.; González, E. R. P.; Agostini, D. L. D. S.; Gomes, H. M.; Medeiros, R. S. J. Therm. Anal. Calorim. 2017, 129, 291.
[19]
Hardy, J. J. E.; Hubert, S.; Macquarrie, D. J.; Wilson, A. J. Green Chem. 2004, 6, 53.
[20]
Sahu, P. K.; Sahu, P. K.; Gupta, S. K.; Agarwal, D. D. Ind. Eng. Chem. Res. 2014, 53, 2085.
[21]
Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1839.
[22]
Molnár, Á. Coord. Chem. Rev. 2019, 388, 126.
[23]
Sakthivel, B.; Dhakshinamoorthy, A. J. Colloid Interface Sci. 2017, 485, 75.
[24]
Veisi, H.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S. Carbohydr. Polym. 2020, 235, 115966.
[25]
Wang, S.; Zhou, H.; Song, S.; Wang, J. Chin. J. Org. Chem. 2015, 35, 85. (in Chinese)
[25]
(王硕, 周宏勇, 宋沙沙, 王家喜, 有机化学, 2015, 35, 85.)
[26]
Tian, T.; Li, Z.; Li, C. Green Chem. 2021, 23, 6789.
[27]
Ding, L.; Li, J.; Jiang, R.; Wang, L.; Song, W.; Zhu, L. Chin. J. Polym. Sci. 2019, 37, 1130.
[28]
Sun, W.; Xia, C. G.; Wang, H. New J. Chem. 2002, 26, 755.
[29]
Zeng, M.; Sun, X.; Qi, C.; Zhang, X. Kinet. Catal. 2013, 54, 716.
[30]
Zhao, H.; Xu, J.; Wang, T. Appl. Catal., A 2015, 502, 188.
[31]
Shen, C.; Xu, J.; Ying, B.; Zhang, P. ChemCatChem 2016, 8, 3560.
[32]
Zhu, L.; Wang, L.; Li, B.; Fu, B. Q.; Zhang, C. P.; Li, W. Chem. Commun. 2016, 52, 6371.
[33]
Shen, J.; Xu, J.; Huang, L.; Zhu, Q.; Zhang, P. Adv. Synth. Catal. 2020, 362, 230.
[34]
Yuan, J.; Liu, S.; Qu, L. Adv. Synth. Catal. 2017, 359, 4197.
[35]
Ramesh, B.; Reddy, C. R.; Kumar, G. R. Reddy, B. V. S. Tetrahedron Lett. 2018, 59, 628.
[36]
Dekamin, M. G.; Kazemi, E.; Karimi, Z.; Mohammadalipoor, M.; Naimi-Jamal, M. R. Int. J. Biol. Macromol. 2016, 93, 767.
[37]
Anuradha; Layek, S.; Agrahari, B.; Pathak, D. D. ChemistrySelect 2017, 2, 6865.
[38]
Goncalves, F. J.; Kamal, F.; Gaucher, A.; Gil, R.; Bourdreux, F.; Martineau-Corcos, C.; Gurgel, L. V. A.; Gil, L. F.; Prim, D. Carbohydr. Polym. 2018, 181, 1206.
[39]
Kaur, P.; Kumar, B.; Kumar, V.; Kumar, R. Tetrahedron Lett. 2018, 59, 1986.
[40]
Liu, Q.; Xu, M.; Zhao, J.; Yang, Z.; Qi, C.; Zeng, M.; Xia, R.; Cao, X.; Wang, B. Int. J. Biol. Macromol. 2018, 113, 1308.
[41]
Lo, J. C., Kim, D.; Pan, C.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.
[42]
Bodhak, C.; Kundu, A.; Pramanik, A. Tetrahedron Lett. 2015, 56, 419.
[43]
Anuradha; Kumari, S.; Pathak, D. Tetrahedron Lett. 2015, 56, 4135.
[44]
Yang, B.; Mao, Z.; Zhu, X.; Wan, Y. Catal. Commun. 2015, 60, 92.
[45]
Liu, X.; Chang, S.; Chen, X.; Ge, X.; Qian, C. New J. Chem. 2018, 42, 16013.
[46]
Narjes, M.; Nasrollahzadeh, M.; Asghar, T.-K.; Rajender, S. V.; Mohammadreza, S. Carbohydr. Polym. 2020, 232, 115819.
[47]
Nasrollahzadeh, M.; Motahharifar, N.; Nezafat, Z.; Shokouhimehr, M. J. Mol. Liq. 2021, 341, 117398.
[48]
Shen, C.; Xu, J.; Yu, W.; Zhang, P. Green Chem. 2014, 16, 3007.
[49]
Frindy, S.; Kadib, A.; Lahcini, M.; Primo, A.; García, H. ChemCatChem 2015, 7, 3307.
[50]
Hajipour, A. R.; Hosseini, S. M.; Jajarmi, S. New J. Chem. 2017, 41, 7447.
[51]
Cheng, L.; Ge, X.; Liu, X.; Feng, Y. Chin. J. Org. Chem. 2020, 40, 2008. (in Chinese)
[51]
(成琳, 葛新, 刘学民, 冯云辉, 有机化学, 2020, 40, 2008.)
[52]
Ying, B.; Xu, J.; Zhu, X.; Shen, C.; Zhang, P. ChemCatChem 2016, 8, 1.
[53]
Li, B.; Wang, L.; Qin, C.; Zhu, L. Catal. Commun. 2016, 86, 23.
[54]
Wen, W.; Han, B.; Yan, F.; Ding, L.; Li, B.; Wang, L.; Zhu, L. Nanomaterials 2018, 8, 326.
[55]
Zhou, L.; Han, B.; Zhang, Y.; Li, B.; Wang, L.; Wang, J.; Wang, X.; Zhu, L. Catal. Lett. 2021, 151, 3220.
[56]
Zhu, L.; Li, B.; Wang, S.; Wang, W.; Wang, L.; Ding, L.; Qin, C. Polymers 2018, 10, 385.
[57]
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 113, 2056.
[58]
Hennessy, E. T.; Betley, T. A. Science 2013, 340, 591.
[59]
Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 116, 4018.
[60]
Shen, J.; Xu, J.; He, L.; Ouyang, Y.; Huang, L.; Li, W.; Zhu, Q.; Zhang, P. Org. Lett. 2021, 23, 1204.
[61]
Shen, J.; Xu, J.; Zhu, Q.; Zhang, P. Org. Biomol. Chem. 2021, 19, 3119.
[62]
Chen, L.; Zhang, Y.; Ding, G.; Ba, M.; Guo, Y.; Zou, Z Molecules 2013, 18, 1477.
[63]
Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Angew. Chem., Int. Ed. 2009, 48, 5916.
[64]
Martina, K.; Leonhardt, S. E. S.; Ondruschka, B.; Curini, M.; Binello, A.; Cravotto, G. J. Mol. Catal. A: Chem. 2011, 334, 60.
[65]
Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1839.
[66]
Jiang, Y.; Wang, Y.; Han, Q.; Zhu, R.; Xiong, X. Chin. J. Org. Chem. 2014, 34, 2068. (in Chinese)
[66]
(江云兵, 王彦龙, 韩骞, 朱荣俊, 熊兴泉, 有机化学, 2014, 34, 2068.)
[67]
Chetia, M.; Ali, A. A.; Bhuyan, D.; Saikia, L.; Sarma, D. New J. Chem. 2015, 39, 5902.
[68]
Kumar, B. S. P. A.; Reddy, K. H. V.; Karnakar, K.; Satish, G.; Nageswar, Y. V. D. Tetrahedron Lett. 2015, 56, 1968.
[69]
Mahdavinia, G. R.; Soleymani, M.; Nikkhoo, M.; Farnia, S. M. F.; Amini, M. New J. Chem. 2017, 41, 3821.
[70]
Jennah, O.; Beniazza, R.; Lozach, C.; Jardel, D.; Molton, F.; Duboc, C.; Buffeteau, T.; Kadib, A. E.; Lastécouères, D.; Lahcini, M.; Vincent, J.-M. Adv. Synth. Catal. 2018, 360, 4615.
[71]
Zhang, Y.; Han, B.; Zhou, L.; Wang, M.; Li, B.; Wang, L.; Zhu, L. Acta Polym. Sin. 2021, 52, 723. (in Chinese)
[71]
(张瑶瑶, 韩彪, 周丽洁, 王明宇, 李博解, 汪连生, 朱磊, 高分子学报, 2021, 52, 723.)
[72]
Antony, R.; David, S. T.; Karuppasamy, K.; Saravanan, K.; Thanikaikarasan, S.; Balakumar, S. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 284.
[73]
Fakhri, A.; Naghipour, A. Mater. Technol. 2016, 31, 846.
[74]
Fakhri, A; Naghipour, A. Environ. Prog. Sustainable Energy 2018, 37, 1626.
[75]
Souza, J. F.; Silva, G. T.; Fajardo, A. R. Carbohydr. Polym. 2017, 161, 187.
[76]
Ali, F.; Khan, S. B.; Kamal, T.; Alamry, K. A.; Bakhsh, E. M.; Asiri, A. M.; Sobahi, T. R. A. Carbohydr. Polym. 2018, 192, 217.
[77]
Guo, Y.; Dai, M.; Zhu, Z.; Chen, Y.; He, H.; Qin, T. Appl. Surf. Sci. 2019, 480, 601.
Outlines

/